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ABSTRACT:
To study micromechanical behavior of concrete, stereological measurements were
conducted, i.e., crack orientation, length, density and other features.  A special
experimental technique was developed which made possible the preservation of the
compressive stress-induced microcracks in concrete as they exist under applied
loads.  This technique involved injecting a molten-metal alloy into the induced
cracks and solidifying it before unloading.  Scanning Electron Microscopy (SEM)
was employed to capture images from the cross sections of the concrete
specimens.

INTRODUCTION
The Scanning Electron Microscope (SEM) is one of the most versatile instruments available

for the examination and analysis of microstructural characteristics of solid objects.  The primary
reason for the SEM‘s usefulness is the high resolution that can be obtained when bulk objects are
examined.
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The microscope has been a powerful tool in the study of cement and concrete since the early
development of these materials [1, 2].  The electron microscope was apparently first used to study
the hydration process of concrete [3, 4, 5, 6].  Although most of these studies were not directly
related to cracks, they led the way to later studies of cracks in which electron microscopy was a
powerful tool.  Later on the scanning electron microscope was used to observe the growth of
surface cracks during loading, using magnifications generally from 35× to 450× [7].  This
investigation of microcracking ranges from a macroscopic studies of the behavior of cracked
specimens to a microscopic study of the cracks themselves.  The presence of microcracks was
predicted on the basis of macrobehavior and verified by microscopic study.  In this paper, the
application of stereology to the microstructure of concrete will be examined.

TECHNIQUE TO PRESERVE STRESS-INDUCED CRACKS IN CONCRETE
The experimental technique utilized for this research involves the application of a metal in

liquid phase, Wood’s metal, which has a melting point range from 70°C to 88°C to preserve the
microstructure of stress-induced microcracks in concrete.  Wood’s metal has a Young’s modulus
of 9.7 GPa, a density of 9.4 g/cm3, and an effective surface tension of about 400 mN/m, and is
solid at room temperature.  Used in conjunction with scanning electron microscopy, it has made
possible the detailed observation of microcracks in concrete as they exist under load.  Details of
the experimental technique is reported in detail elsewhere [8, 9, 10, 11].  Three normal-strength
concrete cylinders, 203 mm long by 102 mm in diameter, were cast using the mix designs shown
below.

Cement:  346 Kg/m3

Water:  183 Kg/m3

Coarse Aggregate (Pea Gravel):  979 Kg/m3

Sand:  859 Kg/m3

Admixture:  HRWR
W/C:  0.528
Slump:  38 mm
Ultimate Strength:  51.7 MPa

The concrete cylinder ends were ground parallel to one another.  The confining stress used to
generate triaxial compression was supplied by stainless steel wires, 0.3 mm in diameter, that were
wound around the entire length of the concrete cylinders, at a pre-tension of 670 N.  Three
experiments were conducted: one on a sample subjected to no loads and two different loading
conditions, uniaxial and triaxial, were used to induce cracks in the other two concrete cylinders.
Triaxiality was provided by the wire wound around the concrete cylinder.  Specimens were loaded
to 85 to 90% of the ultimate strength.

After the concrete samples were prepared for scanning electron microscope studies,
backscatter electron (BSE) images were extracted from each sample.  Figure 1 shows a typical
BSE micrograph which is a multiphase image consisting of bulk cement paste, aggregates, and
Wood’s metal representing stress-induced microcracks.  In order to recognize and isolate Wood’s
metal, which is the representative of pores and fractures in concrete, using an image analyzer, a
histogram for all of the different phases in the image based on their gray levels can be produced,
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with zero representing the darkest phase and 255 representing the brightest phase (Figure 2).
From this histogram, and by means of the trial and error method, two threshold levels can be
established to encompass the brightest phase in the image, namely Wood’s metal.  The threshold
for Wood’s metal identification was set between 170 and 255.  The next step is to eliminate
objects from the background that don’t fall between these threshold levels.  Once the above task
is accomplished, what is left in the image is the crack network and pores indicated by Wood’s
metal.  At this point the aim is to eliminate objects on the basis of their area in pixel units.  The
lower and upper limits of the objects to be eliminated has to be established to include small pores,
small non-continuous cracks, etc.  The next step is to transform this image into a skeletonized
binary image by means of a binary thinning process.  For every thinning step, pixels that are not
relevant to the connectivity of an object are removed from the object margins, i.e., converted into
background pixels.  The connectivity of objects is thus maintained.  This process can be continued
until all objects are reduced to a width of one pixel that approximates the skeletons.  Figure 3 is
the final binary image used for stereological measurements.

Figure 1  A SEM backscatter
image

Figure 2  Establishing
threshold in histogram

Figure 3  Binary-thinned
image of the crack network in

concrete

STEREOLOGY AND CONCRETE
All matter can be described in terms of zero, one, two, and three dimensions.  Stereology

deals with the interpretation of three-dimensional structures by means of their two-dimensional
sections.  Stereology is the opposite of photogrammetry, which utilizes three-dimensional images
in order to construct flat maps.  Techniques conventionally used for studying the three-
dimensional structure of materials, particularly in other material sciences, are often stereological
ones [12, 13].

If a sectioning plane cuts a three-dimensional aggregate of space-filling polyhedrons, a two-
dimensional structure that consists of area-filling polygons can be observed.  The task then is to
relate the observations made on a section to the true three-dimensional microstructure.
Stereology attempts to characterize numerically the geometrical and statistical aspects of those
features of the microstructure of interest; for example, the microcracks in concrete.  In its
broadest context, stereology includes not only the quantitative study and characterization of any
spatial structure, but also its qualitative interpretation.
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There are various approaches to stereological problems.  The statistico-geometrical approach
depends on measuring and classifying a large number of two-dimensional images and is the
method utilized in this study.  It is applicable when objects are randomly distributed in space.  In
such cases, a single section, if extensive enough to contain a statistically significant number of
features, may suffice to obtain valid results.  It can also be used/applied in case of non-randomly
distributed phases.  In that case the sampling procedure should be randomized, however.

In this study, we deal with the numerical or quantitative characterization of points, lines,
surfaces, and volumes.  Fundamental expressions have been determined which relate
measurements on two-dimensional sections to the three-dimensional structure.

BASIC MEASUREMENTS
Table 1 presents some of the basic symbols commonly used in the measurements employing
quantitative stereology.

Table 1  List of basic stereological symbols and their definition

Symbol Dimensions Definition

P Number of point elements, or test points

PL µm-1 Number of intersections of cracks in a section with a
superimposed test array of equally spaced straight parallel
lines per unit of line length

( )θLP µm-1 Number of intersection of cracks in a section with a system
of equally spaced test array of straight parallel lines
positioned in such a way that it successively encloses an
angle θ, θ=π/2 and θ=0, respectively, with the axis of
symmetry

L µm Length of lineal elements, or test line length

LA µm/µm2 Total crack length in a section per unit of area

A µm2 Planar area of intercepted features, or test area

S µm2 Surface or interface area (not necessarily planar)

SV µm2/µm3

Total crack surface area per unit of volume 








TV
S

NA µm-2 Number of cracks in a section per unit of area

VT µm3 Volume of three-dimensional features, or test volume
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In this paper, the stereological parameters of PL , LA , and SV  will be used to perform the
stereological analysis.  Underwood [12] derived the relationships between LA  and SV  with PL ,
which is presented below:

• Number of Point Intersections, PL , is the number of points (intersections) generated per unit
length of test lines, if a linear test array is applied randomly to the microstructure in the section
plane.

• Surface-to-Volume Ratio, SV , is the surface-to-volume ratio of a system of surfaces in a
volume.  The basic equation for obtaining the area of surfaces in a volume was derived by
Salitikov [14] and later by Smith and Guttman [15] which is:

S PV L= 2    m / m2 3µ µ (1)

Equation 1 applies to a system of surfaces with any configuration.  It is as valid for systems of
interconnected surfaces as for systems of discontinuous, separated, or bounded surfaces.
Equation 1 was derived by considering a test cube of edge length l and volume V lT = 3 enclosing a
system of randomly oriented surfaces throughout the cube [12].  The surfaces may be planar or
curved, continuous or interrupted, isolated or connected, as shown in Figure 3.  A set of N
vertical test lines of total length L NlT =  is passed randomly through the cube, cutting horizontal
planes through the cube with density N /l3.

X

Y

Z

l

l

l

Figure 3  The cube containing random surfaces cut by random vertical test lines

The total surface, S , is divided into n elementary units of surface area δS  so that S n S= δ .
The normals to each elementary area form angle θi  to the vertical test lines, and the areas of the
projections of the elementary areas on a horizontal plane, equal δ θS icos .  Thus the fraction of
test lines intersecting the elementary areas is δ θS licos / 2.

If Pi  is the number of intersections associated with each elementary area, then the expected
value of the total number of intersections with the entire surface is:

( ) i

nn n
i

i l
SN

l
SNPPE θ

δθδ
 cos

cos
22 ∑∑ ∑ === (2)
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Since the elementary units of surface are oriented randomly, every value of θi  has equal likelihood

and ∑





 n

in
θcos1  equals the average value, cosθ.  Making appropriate substitutions in Equation

2 yields:

( ) ( ) θδ cos2 Sn
l
NPE 






= (3)

Since n S Sδ = , and N
l

Nl
l

L
V

T

T
2 3= = , where LT  is the total length of test arrays, Equation 3 can be

rewritten as:

( ) θcosS
V
LPE

T

T








= (4)

where ( )PE  is the expected value of the total number of intersections of the test lines with the
system of surfaces.

The evaluation of cosθ can be visualized by means of the hemisphere with a radius of r, as
depicted in Figure 4 [12].  The probability that normals lie between θ  and θ θ+ d  is expressed by

( ) θθ
π

θθπ
θθ d

r
drd sin

2
sin2P 2

2

===
hemisphereofarea

zoneofarea

and average value of cosθ is

( )
2
1

2
sincossincosPcos 2

0

22/

0

2/

0

==== ∫∫ π
ππ θ

θθθθθθθ dd

θ

dθ

δS

Figure 4  Geometry involved in the determination of the probability that random normals lie
between θ  and θ θ+ d
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Rearrangement of Equation 4 gives

( ) ( )
TTT

T

L
PE

V
SS

V
LPE 2

2
==    or   

which yields Equation 1,

S PV L= 2    m / m2 3µ µ

• Length of Line Per Unit Area, LA , relates the length of lineal elements in a plane to their
intersection with a test line:

2mm/   
2

µµ
π

LA PL 





= (5)

The quantity LA  is a basic microstructural parameter that is useful either as it is or when
manipulated into other forms.  To derive Equation 5, given a randomly oriented system of lines in
a plane, let us consider a square test area AT  of edge length l as shown in Figure 5.  A set of N
vertical test lines of total length L NlT =  is passed randomly through the test area, cutting
horizontal lines through the square with density N /l.  The system of lines is divided into n straight
elementary segments of length δL and the total line length in the system is L n L= δ .  The
elementary segments form angle θi  to the vertical test lines, and the length of projections of the
elementary segments on a horizontal line, are δ θL isin .  Thus the fraction of test lines intersecting
the elementary segments is δ θL lisin / .  (Note that nominator L  is related to 2-D structural
features, e.g. crack length.  In LP , denominator L deals with length of line array).

0 X

Y

AT

N

l

l

Figure 5  Model of deriving the relationship LA PL 





=

2
π

If Pi  is the number of intersections of each elementary segment by the test lines, then the
expected value of the total number of intersections with the entire system of lines is
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( ) ∑∑ ∑ ===
n

i

n n
i

i l
LN

l
LNPPE θ

δθδ
sin

sin
(6)

Since the elementary systems are oriented randomly, each value of the angle θi  has equal

likelihood of existence and ∑





 n

in
θsin1  equals the average value sin θ.  Making appropriate

substitutions in Equation 6 yields:

( ) θ
δ sin
l
LnNPE = (7)

Since n L Lδ =  and N
l

Nl
l

L
A

T

T

= =2 , Equation 7 can be rewritten as:

( ) θsinL
A
LPE

T

T= (8)

The evaluation of sinθ  can be visualized by means of the circle depicted in Figure 6.

0

X

Y

θ

dθ

r

r

Figure 6  Geometry involved in the determination of the probability that elementary segments lie
between θ  and θ θ+ d

The probability that the elementary segments are oriented between θ  and θ θ+ d   is equal to
the fraction of the perimeter of a circle that is occupied by this orientation range.  From the
symmetry involved, only one quadrant of the circle needs to be considered, giving for the
probability

( ) θ
ππ

θ
θθ d

r
rdd 2

2/
P ===

circle of perimeter
perimeter offraction 

Thus the average value of sinθ is
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( )
π

θθ
π

θθθθ
ππ 2sin2sinPsin

2/

0

2/

0

=== ∫∫ dd

Rearrangement of Equation 8 gives

2mm/   )(
2

µµ
π

TT L
PE

A
L







=

or, in our notation,

2mm/   
2

µµ
π

LA PL 





= (9)

DEGREE OF ORIENTATION

Underwood [12] states that in real structures, the lines in a microsection of a given specimen
are usually either isometric or partially oriented.  Only in rare cases do we find completely
oriented or completely random systems of lines.  In a partially oriented system of lines in a plane,
part of the total length of lines is oriented in a definite direction (or directions).  The remaining
segments may essentially have a random orientation.  This is an assumption to simplify the
sampling strategy.  This assumption was proposed for the first time by Stroeven [16] for line
elements and by Saltikov [17] for surface elements.

The lines of a partially oriented system of lines in a plane can be divided into elementary
straight segments that are very small and of equal length.  Some or all of the segments will lie
parallel to one or more definite directions (the orientation axes).  The remaining segments are
assumed to be oriented randomly, or isometrically.  From this point of view, a partially oriented
system of lines may be regarded as consisting of two superimposed systems of lines: an oriented
portion and a random portion.

In the random case, the length of linear elements in a plane is proportional to the number of
intersections made with a test line.  Using a test array of straight parallel lines, the number of
intersections with an oriented system of lines such as a crack system in concrete will vary with the
direction of the test array.  The dependence of the number of intersections per unit length with the
angle of the test array can be used to characterize the degree and type of orientation of a system
of lines in a plane.

If a test array system of equally spaced, straight parallel lines is superimposed on a sample
area, i.e., an image of the crack network in concrete, similar to Figure 3, the number of
intersections per unit length of the test line PL  can be determined.  Since the value of PL  is a
function of the direction of the line system, the specific number of intersections is indicated as
PL ( )θ .  The rule of total projections [16] states that this value of PL ( )θ  equals the value of the
total projected length 

.ProjAL  of the lineal features upon a line perpendicular to the test array, or

( )
.Pr ojAL LP =θ (10)
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This type of sampling procedure is called the method of directed secants on a plane [17].

In the case of an isometric (randomly oriented) system, the value of PL ( )θ  is dependent on θ
and both sides of equation 10 can be averaged with respect to orientation.  The result is an
important relationship connecting the length of lineal features in a sampling area, LA , to the
specific surface area or to the number of intersections per unit length of the test line, and averaged
with respect to the orientation (note that from Equation 1, LV PS 2= ).  Therefore,

π π
2 4

P L SL A V= = (11)

Applying the method of random secants on a plane to an image of a crack pattern, Equation
11 presents simple algebraic relationships to calculate the total crack length per unit area or the
specific surface area (of the cracks) per unit volume.  The dependence of the number of
intersections per unit length with the angle of the test array can be used to characterize the degree
and types of orientation of a system of lines in a plane.  Saltikov [18] proposes a polar plot of PL

with respect to the orientation axis (axes), and calls the resulting curve the rose of the number of
intersections, or simply the rose.

The rose for an oriented system of lines can readily be obtained experimentally by applying a
test array to the system of lines at equal angular increments with respect to the orientation axis,
and determine PL  separately at each angle.  A polar diagram can be made by plotting the radius
vectors, PL , versus θ.  The rose diagram is created by connecting the ends of the radius vectors by
lines or a smooth curve.  In the case of isometry, the rose will be a circle with its center at the
origin of the polar figure.  If a preference direction should occur in a crack pattern, the shape of
the rose will change.

The stress-induced microcrack system in concrete, a composite material, is considered to be a
partially oriented as opposed to a completely oriented (idealized) system.

APPLICATION OF STEREOLOGY TO CONCRETE FRACTURE

Stroeven [15, 19, 20, 21, 22, 23], Ringot [24], and Massat et al. [25] successfully applied the
concept of stereology to study micromechanical aspects of concrete.  With the advent of modern
image analysis systems, it is now possible to perform stereological analysis on a great number of
images accurately and expeditiously, whereas in the past this was not achievable by means of
manual methods.

The concept of stereology, which deals with the interpretation of three-dimensional structures
by means of their two-dimensional sections, was applied to analyze the backscatter electron
images, obtained from SEM using an image analyzer (Kontron Electronik GmbH Image Analysis
Division, IBAS "Interaktives Bilt-Analysen System" (Interactive Image Analysis System)).
Computer programs were developed to analyze the images based on the concept of stereology.
The area of the image that image analyzer analyzes is a square with the dimensions 512×512
pixels, each pixel corresponding to 3.2890 microns at ×60 magnification, which in this case is the
magnification used to obtain the BSE images.
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The binary image, such as the one in Figure 3, is then intersected by an array of straight
parallel lines at 15° angular increments, in this case at angles of 0°, 15°, 30°, 45°, 60°, 75°, 90°,
105°, 120°, 135°, 150°, and 165°.  Figure 7 depicts the array of straight parallel lines at 0° (or
180°), 15°, and 165°.  The number of crack intercepts at a given angle is measured according to
the number of intersections on line array at that angle with the features in the binary image, which
in this case represents the crack network.  The number of intersections is determined separately at
each angle θ.  Then the number of intersections is plotted versus θ, creating the rose of the
number of intersections diagram.  The rose diagram characterizes the degree of orientation of the
cracks, and makes it easier to interpret the data.

( ) FIELDCOUNTInterceptsCrack  ofNumber =θ

Figure 7  Array of straight parallel lines

The program also calculates the total area of the features in the binary image.  Since the area
of each image is known, the percent of the area that is cracked (or, the crack density) can be
determined.  Figure 8 is a flow chart summarizing the above discussion.

Number of Point 
Interceptions, P

Surfaceto-Volume 
Ratio, S Crack Length Crack Angle with 

Vertical

Crack Orientation

Crack Length, L

Concrete Specimen

SEM

Image

Binary Image of  
Crack Pattern

Stereological and 
Data Acquisition

Polish

Image Acquisition

Discrimation

Measurements

Interpretation

V

Stereological

L

A

Figure 8  Flow chart
for stereological steps
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RESULTS

Table 2 summarizes the results of stereological analysis.  As described earlier, after a binary
image of the crack network is developed, that binary image is then intersected by an array of
straight parallel lines at angles of 0°, 15°, 30°, 45°, 60°, 75°, 90°, 105°, 120°, 135°, 150°, and
165°.  The number of crack intercepts at a given angle is measured according to the number of
intersections on line array at that angle with the crack network in the binary image.

Table 2  The number of crack intercepts with the array of straight parallel lines, ( )θLP

Specimen Angle of Array of Straight Parallel Lines

Loading 0°° 15°° 30°° 45°° 60°° 75°° 90°° 105°° 120°° 135°° 150°° 165°°

No Load 31 31 29 27 29 31 30 30 28 25 28 32

Uniaxial 47 48 44 39 41 42 41 42 39 36 42 47

Confined 25 24 23 20 22 23 22 23 21 20 22 25

Table 3 shows the total area of the cracks in the binary image.  Since the area of each image is
known (512×512 pixel square on a SEM image), the percent of the area that is cracked (i.e.,
crack density) can be determined.  Another value in the table below is the surface-to-volume ratio,
SV , determined from the basic equation for obtaining the area of surfaces in a volume, S PV L= 2
(only for random crack systems).

Table 3  Stereological Data

Loading Crack Area % Crack Area SV

No Load 8223 1.00 1.1E-3

Uniaxial 11843 1.53 1.6E-3

Confined 6485 0.74 8.3E-4

The stereological measurement of the surface-to-volume ratio, SV  ( )VS , was determined
from the basic equation for obtaining the total crack surface area per unit of volume.  Plot of SV

for different loading conditions are presented in Figure 9.  Crack surface area, SV , decreases as
the confining stresses is introduced.
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CRACK SURFACE AREA (S V ) VS. LOADING CONDITION

0.0E+00
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1.6E-03

No Load Uniaxial Confined

Loading Condition

SV
 ( µµ

m
2 / µµ

m
3 )

Figure 9  Crack surface area (SV ) as a function of loading condition

Based on stereological analysis, LA , the length of line per unit area also decreases with presence
of confining stresses.  The average length distribution of the microcracks strongly depends on the
confining stress.  Because the microcracks are produced by local tensile stresses, the driving
forces from the local tensile stresses decrease as the microcrack length increases.  On the other
hand, the negative driving forces applied by the confining stress increase as the microcrack length
increases.  The combined effect of these two arguments is a great reduction in microcrack length
under high confining stress.

In the specimen subjected to uniaxial compression, most of the microcracks propagated to a
certain length and stopped.  When confining stress was introduced, the average length of the
microcracks decreased, as indicated in Figure 10.  It shows clearly that the average length
distribution of microcracks is strongly dependent on the confining stress.
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Figure 10  Stereological measurement of crack length as a function of loading condition
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One way to determine the anisometry of the crack network, ( )θLP , is to plot it in a polar
figure according to the specific orientation of the cracks.  The plot of number of intersections
versus orientation (in 12 equal angle steps) covers only the range of 0° to 165° (cracks at 0° and
180° have equal lengths) since the range from 180° to 360° is redundant.  This information is
shown in different format than most distribution plots because the compass rose pattern makes it
easier to interpret the data.  A so-called rose of the number of intersections is constructed in this
way.  Figure 11 shows the rose of the number of intersections for the reference (no load),
uniaxially, and triaxially loaded concrete samples.  From Figure 11 it is evident that cracks are not
randomly oriented and there is a definite orientation in the crack pattern.  Many cracks lie within
15 degrees of the direction of the maximum compression (between 0° and 15° and 165° and 180°)
than in other directions.

No-load Uniaxial Confined

Figure 11  Rose of the number of intersections diagrams for reference and uniaxially-loaded
concrete specimens

Crack density can be measured in terms of percent cracked area.  Figure 12 is the plot of
percent cracked area as a function of loading condition.  Again, percent cracked areas decrease as
the confinement is introduced.  The reference specimen (no-load sample) has a relatively high
crack density due to the fact that concrete is heavily cracked even before applying any load (Hsu
et al. 1963).  Hence, the effective crack density increase for the specimen subjected to applied
loads is the difference between the final crack density and the crack density of the no-load
specimen.
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Figure 12  Percent cracked area as a function of loading condition
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CONCLUDING REMARKS

The stereological approach to the study of mechanical behavior of concrete was examined
here.  By analysis of BSE images and the application of stereology, various measures of the crack
surface area per unit volume, crack length, crack orientation and crack density were obtained.
The measured surface area of cracks increased when the specimens were loaded uniaxially.
Confinement decreased the crack density.  Crack orientation measurements indicated slight
orientation, however, the cracks were relatively isotropic at a microscopic level, which is due the
domination of transition zone microcracks which are randomly oriented.

Stereology is a powerful tool to study mechanical behavior of engineering materials and its
application in the field of concrete technology should be further explored.
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