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Abstract: The commonly used Pauw’s formula to predict elastic modulus of concrete is very general and does not address the complexity
of modern concretes, such as high-strength concrete, use of different types of aggregates and admixtures, etc. This paper develops a
statistical framework to construct probabilistic models for the elastic modulus of concrete and evaluates the influence of different
aggregate types, based on a large number of experimental data. The proposed framework to construct probabilistic models expands upon
Pauw’s formula and properly accounts for both aleatory and epistemic uncertainties. Bayesian updating is used to assess the unknown
model parameters based on experimental data. A Bayesian stepwise deletion process is used to identify important explanatory functions
and construct parsimonious models. As an application, the approach is used to develop a probabilistic model for concretes made using
crushed limestone and crushed quartz schist coarse aggregates.
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Introduction

In single-phase solids, i.e., homogeneous materials, a direct rela-
tionship exists between density and modulus of elasticity. In
heterogeneous, multiphase materials, i.e., concrete, the volume
fraction, density, and modulus of elasticity of each phase, and the
characteristics of interfacial transition zone �ITZ� determine the
elastic behavior of the composite. Measuring the elastic modulus
of concrete, Ec, requires cylinder sample preparation and conduct-
ing uniaxial testing on those cylinders in the laboratory. The elas-
tic modulus is given by the shape of the stress–strain curve for
concrete under uniaxial loading. Since the curve for concrete is
nonlinear, different methods such as tangent modulus, chord
modulus, secant modulus, and dynamic modulus are used for
computing elastic modulus of concrete. Short of conducting labo-
ratory testing, Pauw’s empirical formula �Pauw 1960� is com-
monly used to predict the elastic modulus of concrete. It is a
density-dependent mathematical relation between Ec and com-
pressive strength, fc�, of concrete. In U.S. customary units it is
expressed as Ec=33w3/2�fc�, where w�unit weight of concrete in
pounds per cubic feet and fc��compressive strength. Both Ec and
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fc� are expressed in pounds per square inch. In SI units, Pauw’s
formula becomes Ec=43w3/2�fc��10−6 �Neville 1995�, where Ec

is expressed in GPa, fc� in MPa, and w in kg per cubic meter.
Both the ACI Building Code 318R-83 �ACI 1992� and the ACI

Nuclear Safety Structures Code 349-27 �1992� recommend
Pauw’s formula. The ACI code also recommends a simplified
form of Pauw’s formula in the case of normal weight and normal
strength concrete where the dependence of Ec on w is not ac-
counted for �Ec=57,000�fc�, when both Ec and fc� are expressed in
pounds per square inch, and in SI units Ec=4.73�fc�, when Ec is
expressed in GPa and fc� in MPa�.

Both the complete and the simplified forms of Pauw’s formu-
las are deterministic and do not account for the uncertainties in
the model. Geyskens et al. �1998� quantified the model uncertain-
ties in the simplified Pauw’s formula through a comprehensive
Bayesian analysis using data on normal weight and normal
strength concrete obtained from literature and from further labo-
ratory testing, and developed a model that can be used for proba-
bilistic prediction of Ec.

However, today’s concrete is commonly made using chemical
and/or mineral admixtures, with variety of aggregate types and
curing conditions, all of which will have a great impact on the
elastic modulus. Neither of the two Pauw’s formulas or the proba-
bilistic model developed by Geyskens et al. �1998� accounts for
these factors. In order to examine the influence of different ag-
gregates, admixtures, practices, such as curing, on elastic modu-
lus of concrete, we collected data from the tests performed on
variety of conditions in a number of laboratories and constructed
a database containing the results of those tests. A Bayesian frame-
work is developed to construct probabilistic models for Ec that
properly account for all the prevailing uncertainties, including
model errors arising from an inaccurate model form or missing
variables, measurement errors, and statistical uncertainty. With
the aim of facilitating their use in practice, the probabilistic mod-
els are constructed using a model form similar to Pauw’s empiri-
cal formula with additional correction terms called explanatory

functions. Methods for assessing the model parameters using the
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collected data are described. Using a Bayesian step-wise deletion
process, explanatory functions that are important to predict Ec are
identified and parsimonious probabilistic models are constructed.
The identified explanatory functions also provide insight into the
underlying behavioral phenomena. Fig. 1 summarizes the key
steps in the proposed Bayesian statistical framework.

While the framework described in this paper is aimed at de-
veloping probabilistic models for Ec, the approach is general and
can be applied to the development and assessment of models in
many engineering applications.

As an application, the proposed methodology is used to con-
struct an accurate probabilistic model to predict Ec that can be
used in practice for the following two types of concrete:
1. Concrete made using crushed limestone coarse aggregate

with volume ranging from 36.6 to 41.3% by volume.
2. Concrete made using crushed quartz schist coarse aggregate

with volume ranging from 35.7 to 40% by volume.
The proposed methodology is also used to explore the effect of w
on Ec. Tables 1 and 2 list the experimental data for the two types
of concrete used in this paper �for the complete database, refer to
the database for mechanical properties of concrete at http://
bme.t.u-tokyo.ac.jp/researches/detail/concreteDB/index.html�.

Probabilistic Models

In the present paper we want to investigate the dependency of Ec

on w and fc�, assessing the most appropriate model form for two
types of concrete, and estimating the unknown parameters enter-
ing in the selected model.

Following Pauw’s empirical formula, the writers consider the
general univariate model form

log�Ec� = �1 + �2 log�fc�� + �3 log�w� + �� �1�

where �= �� ,�2� denotes the set of unknown model parameters;
�= ��1 ,�2 ,�3�; ��random variable with zero mean and unit vari-
ance; and � represents the standard deviation of the model error.
Note that for given fc�, w, �, and �, we have Var�log�Ec��=�2 as

Fig. 1. Steps to construct a probabilistic model
the variance of the model.
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Table 1. Experimental Data for Concrete Made Using Crushed
Limestone Coarse Aggregate with Volume Ranging from 36.6 to 41.3%
by Volume

fc� �MPa� Ec �GPa� w �kg/m3�

23.73 27.36 2,310.0

25.69 32.56 2,370.0

35.99 33.54 2,320.0

37.17 34.62 2,350.0

45.11 34.72 2,340.0

38.83 35.21 2,383.3

45.70 37.66 2,370.0

43.15 37.72 2,451.0

43.15 37.76 2,450.0

45.80 38.42 2,450.0

45.01 39.47 2,458.0

45.01 39.52 2,460.0

54.92 40.14 2,461.0

57.37 41.78 2,470.0

57.37 41.79 2,474.0

63.94 41.84 2,472.0

72.96 41.87 2,410.0

56.58 41.87 2,433.7

59.33 42.27 2,493.0

59.33 42.27 2,490.0

64.23 42.36 2,460.0

64.23 42.40 2,456.0

66.59 42.53 2,456.0

65.90 43.77 2,453.0

58.64 44.31 2,512.0

89.73 44.33 2,379.9

58.64 44.33 2,510.0

67.86 44.47 2,493.0

72.18 44.52 2,477.0

84.83 44.62 2,450.0

70.31 44.82 2,500.0

70.31 44.85 2,497.0

79.83 45.31 2,490.0

79.83 45.32 2,485.0

105.03 45.60 2,379.9

72.77 45.70 2,510.0

72.77 45.72 2,508.0

69.04 45.88 2,501.0

69.04 45.90 2,500.0

96.99 46.19 2,456.3

66.69 46.28 2,504.0

66.69 46.29 2,500.0

85.91 46.32 2,471.0

79.43 46.39 2,490.0

79.43 46.41 2,487.0
ATERIALS IN CIVIL ENGINEERING © ASCE / OCTOBER 2007 / 899



The above additive model form is valid under the following
assumptions: �a� the model standard deviation is independent of x
�homoskedasticity assumption� and �b� the model error has the
normal distribution �normality assumption�. Employing a suitable
transformation of each quantity of interest approximately satisfies
these assumptions. For a positive-valued quantity Y, Box and Cox
�1964� suggest a parametrized family of variance stabilizing
transformations of the form

C =
Y� − 1

�
� � 0

= ln Y � = 0 �2�

where Y denotes the quantity of interest in the original space; and
��parameter that defines a particular transformation. As special
cases, �=0 specifies the logarithmic transformation, �=1/2
specifies the square-root transformation; �=1�linear transforma-
tion; and �=2 specifies the quadratic transformation. Under the
assumptions of homoskedasticity and normality, one can formu-
late the posterior distribution of � by using the Bayes’ theorem
and estimating its value for given data. In many practical situa-
tions, the model formulation itself often suggests the most suit-
able transformation. Diagnostic plots of the data or the residuals
against model predictions or individual regressors can be used to
verify the suitability of an assumed transformation �Rao and

Table 1. �Continued.�

fc� �MPa� Ec �GPa� w �kg/m3�

97.28 46.48 2,427.3

87.18 46.58 2,464.8

91.40 46.68 2,476.9

85.51 46.88 2,481.0

79.83 46.95 2,478.0

99.73 47.37 2,429.2

80.51 47.46 2,510.0

80.51 47.47 2,509.0

116.60 48.54 2,429.2

114.64 48.54 2,379.9

94.83 48.61 2,497.0

97.87 48.64 2,476.9

97.58 48.94 2,500.0

97.58 48.95 2,502.0

100.03 49.33 2,510.0

107.68 49.42 2,489.0

121.80 49.62 2,456.3

122.49 50.11 2,427.3

110.32 50.21 2,476.9

129.35 50.50 2,427.3

127.19 50.90 2,429.2

112.58 50.90 2,500.0

112.58 50.93 2,504.0

100.03 52.00 2,512.0

136.61 52.27 2,456.3
Toutenburg 1997�. In the following analyses, considering the non-
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negative nature of Ec, fc�, and w we used a logarithmic variance
stabilizing transformation.

Model Assessment

In assessing a model, or in using a model for prediction purposes,
one has to deal with two broad types of uncertainties: aleatory
uncertainties �also known as inherent variability or randomness�
and epistemic uncertainties �Bedford and Cooke 2001; Gardoni et
al. 2002a; Ang and Tang 2006�. The former are those inherent in
nature; they cannot be influenced by the observer or the manner
of the observation. Referring to the model formulations in Eq. �1�,
this kind of uncertainty is present in the variables Ec, w, fc�, and
partly in the error term �. The epistemic uncertainties are those
that arise from our lack of knowledge, our deliberate choice to
simplify the model, from errors that arise in measuring observa-
tions, and from the finite size of observation samples. This kind of
uncertainty is present in the model parameters � and partly in the
error term �. The fundamental difference between the two types
of uncertainties is that the aleatory uncertainties are irreducible
while the epistemic uncertainties are reducible, e.g., by use of
higher-order models, more accurate measurements and collection
of additional data.

Since the model in Eq. �1� is linear in the unknown parameters
�, it can be rewritten as

E = H� + �� �3�

where E�n�1 vector of independent observations; n�number

Table 2. Experimental Data for Concrete Made Using Crushed Quartz
Schist Coarse Aggregate with Volume Ranging from 35.7 to 40% by
Volume

fc� �MPa� Ec �GPa� w �kg/m3�

42.56 24.91 2,367.5

63.84 29.91 2,333.8

66.49 30.01 2,372.1

80.51 30.69 2,367.5

88.85 30.89 2,411.0

80.81 31.87 2,410.9

78.55 31.87 2,418.1

86.00 32.56 2,397.2

86.10 33.44 2,333.8

86.40 35.01 2,372.1

80.51 35.30 2,460.0

97.48 35.60 2,410.9

95.91 36.48 2,333.8

83.65 36.77 2,450.0

109.05 37.17 2,372.1

98.56 37.85 2,460.0

121.99 38.05 2,397.2

100.22 38.15 2,367.5

112.68 38.83 2,411.0

110.32 39.13 2,410.9

107.38 39.23 2,460.0

123.66 39.52 2,411.0

114.25 40.99 2,418.1

128.96 41.97 2,397.2

128.27 43.15 2,418.1
of observations; H�n�k matrix of known regressors or explana-
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tory functions; hij , i=1, . . . ,n and j=1, . . . ,k, � denote a k�1
vector of unknown model parameters; ��n�1 vector of normal
random variables having zero mean and unit variance; and � rep-
resents the standard deviation of the model errors. Expanding out
the matrices we can write Eq. �3� as

�
log�Ec�1

�
log�Ec�i

�
log�Ec�n

� = �
1 log�fc��1 log�w�1

� � �
1 log�fc��i log�w�i

� � �
1 log�fc��n log�w�n

���1

�2

�3
� + ��

�1

�
�i

�
�n

� �4�

where, in this case, k=3, hi1=1, hi2= log�fc��i, and hi3= log�w�i. As
shown by Box and Tiao �1992�, the posterior distribution of the
unknown model parameters � can be written as

p�	�	E� � p�	s2	�2�p�	�̂	�,�2�p��� �5�

where

�̂ = �H�H�−1H�E

s2 =
1

v
�E − Ê���E − Ê�

v = n − k

Ê = H�̂ �6�

Eq. �5� is an expression of the Bayes’ theorem, where
p����prior distribution that reflects our state of knowledge
about � prior to obtaining the experimental observations, E; and
p�� 	E��posterior distribution of � given E. The posterior dis-
tribution p�� 	E� incorporates both what is known about � be-
fore E are collected and the information content in E. In practice,
the prior might incorporate any subjective information about �
that is based on our engineering experience and judgment. Fol-

lowing Fisher �1922�, p�s2 	�2�p��̂ 	� ,�2� can be seen as repre-
senting the objective information about � coming from the data
and it is called the likelihood function of � for given E and is
written as L�� 	E�.

When new data become available, Eq. �5� can be reapplied to
update our present state of knowledge. For example, given an
initial sample of observations, E1, Eq. �5� gives

p�	�	E1� � L�	�	E1�p��� �7�

If a second sample of observations, E2, distributed independently
of E1, is collected, we can update p�� 	E1� to account for the new
information such that

p�	�	E1,E2� � L�	�	E2�L�	�	E1�p��� � L�	�	E2�p�	�	E1� �8�

where the posterior distribution in Eq. �7� now plays the role of
the prior distribution.

The same updating process can be repeated every time new
information becomes available. For example, in case we have m
independent samples of observations, the posterior distribution
can be written as

p�	�	E1, . . . ,Eq� � p�	�	E1, . . . ,Eq−1�L�	�	Eq� q = 2, . . . ,m

�9�

where p�� 	E1� is given as in Eq. �7� and is updated after each
new sample becomes available. Repeated applications of Bayes’

theorem are similar to a learning process, where our present

JOURNAL OF M
knowledge about the unknown parameters � is updated, as new
data become available.

Priors that have no or little information relative to an intended
experiment are typically called noninformative priors. They re-
flect the fact that little or nothing is known a priori. Assuming a
noninformative prior and with � and log��� approximately inde-
pendent and locally uniform, i.e.,

p��� = p���p��2� � �−2 �10�

we can rewrite the joint posterior distribution in Eq. �5� as �Box
and Tiao 1992�

p�	�,�2	E� � p�	�2	s2�p�	�	�̂,�2� �11�

Furthermore, the marginal posterior distribution of �2 is in the
inverse chi-square distribution, vs2�v

−2, and the marginal posterior
distribution of � is

p�	�	E� =

	
v + k

2
�	H�H	1/2

s
−k

�	
1

2
�k

	
v

2
���v�k

��1 +
�� − �̂��H�H�� − �̂�

vs
2 −�v+k�/2

− 
 � �i � 


i = 1, . . . ,3
�12�

which is the multivariate t distribution, tk��̂ ,s2�H� H�−1 ,v�. We

note that �̂�mode and the mean of � and its covariance matrix is
vs2�H�H�−1 / �v−2�, and the mean and variance of �2 are vs2 /
�v−2� and 2v2s4 / ��v−2�2�v−4��, respectively. Derivations and
additional detail on these distributions can be found in Box and
Tiao �1992�.

In the case prior information is available either from engineer-
ing judgment or from a previous statistical analysis, computation
of the posterior statistics, as well as the normalizing constant �, is
not a simple matter, as it requires multifold integration over the
Bayesian kernel, L���p���. In this case the closed-form solution
presented above cannot be used and numerical solutions are the
only option. For example, an algorithm for computing the poste-
rior mean and covariance matrix based on importance sampling is
described in Gardoni et al. �2002b�.

Model Selection

For practical prediction purposes, the selection process should
aim at a model that is unbiased, accurate and can be easily
adopted in practice. Furthermore, from a statistical standpoint, it
is desirable that the model has a parsimonious parametrization
�i.e., has as few parameters �i as possible� in order to avoid the
loss of precision of the estimates and of the model due to the
inclusion of unimportant predictors and to avoid overfitting the
data.

The model form in Eq. �1� is unbiased by formulation. Fur-
thermore, a good measure of its accuracy is represented by the
posterior mean of its standard deviation �. Specifically, among a

set of parsimonious candidate models �in terms of number of
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unknown parameters �i�, the one that has the smallest � can be
considered to be the most accurate. Therefore, an estimate of the
parameter � and of its standard deviation, e.g., its posterior mean
and posterior standard deviation, can be used to select the most
accurate model among several viable candidates.

In Gardoni et al. �2002a�, a step-wise deletion procedure is
described for reducing the number of parameters in the probabi-
listic model. The aim is to achieve a compromise between model
simplicity �few terms� and model accuracy �small ��. In essence,
the procedure eliminates each term when the coefficient of varia-
tion �COV� of �i is large in comparison to �. Note that � is
approximately equal to the COV of the predicted Ec for a given
set of parameters, therefore, the accuracy of the model is not
expected to improve by including a term that has a COV much
greater than the model itself. This deletion of terms is carried out
step-wise while monitoring the posterior mean of � to make sure
that it does not unduly increase. The step-wise deletion process
proceeds as follows:
1. Compute the posterior statistics of the model parameters �

= ��1 , . . . ,�p� and �.
2. Identify the explanatory function hj among the higher order

terms whose coefficient � j has the largest posterior COV. The
term hj�least informative among all the explanatory func-
tions, so one may select to drop it from the model. Deletion
is always made from higher order terms to maintain hierar-
chical submodels. In this application, h1=1 is always present
in the model while h2= log�fc�� and h3= log�w� may be
removed.

3. Assess the reduced model of Step 2 by estimating its param-
eters. If the posterior mean of � has not increased by an
unacceptable amount, accept the reduced model and return to
Step 2 for possible further reduction of the model. Otherwise,
the reduction is not desirable and the model form before the
reduction is as parsimonious as possible.

While there is considerable room for judgment in the above
procedure, this is a part of the art of model building. Applications
in the remaining of this paper demonstrate this step-wise model
reduction procedure.

Application of the Bayesian Framework

As an application, the methodology described in the previous sec-
tions is used to construct two accurate probabilistic models to
predict Ec that can be used in practice and to explore the effect of
w on Ec. In this application, the following two types of concrete
are considered:
1. Concrete made using crushed limestone coarse aggregate

with volume ranging from 36.6 to 41.3% by volume.
2. Concrete made using crushed quartz schist coarse aggregate

with volume ranging from 35.7 to 40% by volume.
The data used for the model assessment listed in Tables 1 and

2 have been collected from technical papers of the Annual Meet-
ings of the Architectural Institute of Japan �AIJ�, Proceedings of
the Japan Concrete Institute �JCI�, Proceedings of Cement and
Concrete from Cement Association of Japan �CAJ�, Journal of
Cement and Concrete by CAJ, JCI Concrete Journal, etc., pub-
lished during the last quarter century in Japan.

First, we look at concrete made using crushed limestone
coarse aggregate. The experimental data are reported in Table 1.
The ITZ, which represents the interfacial region between the par-
ticles of coarse aggregate and the hydrated cement paste, is a thin

shell around the aggregate and is generally weaker than either of
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the two components of concrete, and therefore it exercises a far
greater influence on the mechanical behavior of concrete than is
reflected by its size. The elastic moduli at the ITZ can be as much
as 30% lower than in bulk cement paste �Lutz and Monteiro
1995�. The quality of ITZ is of importance and may affect the
value of Ec when the bond is particularly strong, as is the case in
high performance concrete. The mineralogical characteristics of
aggregate affect the microstructure of the ITZ. In the case of
limestone, there is a chemical reaction between the limestone and
the hydrated cement paste and, consequently, a dense interface
zone is formed �Nemati and Monteiro 1997�, as can be seen in
Fig. 2.

Fig. 2 shows scanning electron microscopy �SEM� micro-
graphs of no stress-induced microcracks or regions of connected
porosity in the interfacial transition zone, when limestone aggre-
gates are used in concrete. The magnified micrograph on the right
shows the ITZ microstructure.

A new probabilistic model that better predicts Ec for this type
of concrete is constructed using the model form in Eq. �1�. Using
a noninformative prior distribution and the experimental data
listed in Table 1, the posterior distribution of �2 is an inverse
chi-square distribution, vs2�v

−2, with v=67 and s=0.019. The val-
ues of v and s are computed using Eq. �6�. While the posterior
statistics of �= ��1 ,�2 ,�3� are summarized in Table 3 and com-
pared with the original values according to Pauw’s formula.

As described in the Model Selection section, since the largest
COV equals 0.067 �for the parameter �3� and it is close in mag-
nitude to s all the explanatory functions in the model are impor-
tant to predict Ec and removing any term would deteriorate the
quality of the model.

Comparing the posterior statistics of � with the original values
in Pauw’s empirical formula, we notice that Pauw’s formulas
overestimates the value of �1, �2, and �3. However, we should
note that there are substantial difficulties that arise in interpreting
the numerical values of empirical regression coefficients in case
of high positive or negative correlation between the parameters.

Fig. 2. Influence of mineralogy on microstructure of interfacial tran-
sition zone: limestone produces a dense interface zone �Nemati et al.
1997, with permission�

Table 3. Posterior Statistics of �= ��1 ,�2 ,�3� for Concrete Made Using
Crushed Limestone Coarse Aggregate with Volume Ranging from 36.6 to
41.3% by Volume

Correlation
coefficient

Parameter
Original

value Mean
Standard
deviation �1 �2 �3

�1 −3.15 −5.29 0.975 1.0 0.39 −0.98

�2 0.500 0.265 0.007 0.39 1.0 −0.42

�3 1.50 1.90 0.126 −0.98 −0.42 1.0
ER 2007



So, due to the high negative correlation between �1 and �3,
observations on �1 and �3 may require further experimental
investigations.

Fig. 3 shows a comparison between the measured and the pre-
dicted values of the elastic module of concrete based on the origi-
nal Pauw’s formula �*� and the mean value of the proposed
probabilistic model �•�. For a perfect model, the experimental
data should line up along the 1:1 dashed line. The dotted lines
delimit the region within one standard deviation of the mean of
the probabilistic model. We see that Pauw’s formula is strongly
biased and tends to systematically underestimate Ec for lower
values and to overestimate Ec for higher values. A basic tool for
detecting deviations from the assumptions made on the probabi-
listic models and for examining the quality of the fit is diagnostic
plots of the residuals. A systematic pattern in the residuals plotted
versus the fitted values would suggest deviation from linearity in
� and, hence, an inadequate fit �Rao and Toutenburg 1997�. We
see that the residuals plotted versus the measured data for original
Pauws’ formula �*� show a clear linear pattern. While for the
proposed model, the residuals are randomly distributed showing
no sign of a pattern and, therefore, of departure from linearity,
which supports the quality of the fit.

Fig. 4 plots the predicted Ec using Pauws’ formula �*� and
using the proposed model �•� versus the measured fc�. The mea-
sured Ec are also shown in Fig. 4 �O�. We can see that Pauws’
formula systematically underestimates Ec for fc� below a threshold

Fig. 4. Predicted Ec using Pauws’ formula �*� and using the prop
limestone coarse aggregate

Fig. 3. Comparison between measured and predicted Ec and corresp
using crushed limestone coarse aggregate. Dotted lines delimit the re
JOURNAL OF M
strength of Ec estimation �fc��75 MPa� and systematically over-
estimates Ec above it �fc�75 MPa�. The proposed formula cor-
rects for this systematic errors and is unbiased over the entire
range of fc�.

Next, we consider concrete made using crushed quartz schist
coarse aggregate with volume ranging from 35.7 to 40% by vol-
ume. The experimental data are reported in Table 2. In case of
quartz aggregate, there is an elastic mismatch between aggregate
and the bulk cement paste. Aggregates with low modulus of elas-
ticity �that is, a modulus not very different from the modulus of
elasticity of hydrated cement paste� lead to lower bond stresses
with the matrix, which is beneficial with respect to high perfor-
mance concrete. The experimental results indicate that the ITZ
between quartz particles and hydrated cement paste is always less
dense than bulk paste, regardless of the aggregate size �Ping et al.
1991�.

As we did for concrete made using crushed limestone coarse
aggregate, we construct a new probabilistic model that better pre-
dicts Ec for this type of concrete. The probabilistic model is con-
structed using the model form in Eq. �1�. Using a noninformative
prior distribution and the experimental data listed in Table 2, the
posterior distribution of �2 is an inverse chi-square distribution
vs2�v

−2 with v=22 and s=0.046. The values of v and s are com-
puted using Eq. �6�. Posterior statistics of � are summarized in

odel �•� versus the measured fc� for concrete made using crushed

g residuals based on full �a�; reduced �b� models for concrete made
ithin one standard deviation of the mean of the probabilistic model.
osed m
ondin
gion w
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Table 4 and compared with the original values according to
Pauw’s formula.

Comparing the posterior statistics of � with the original values
in Pauw’s empirical formula, we notice that Pauw’s formulas un-
derestimates the value of �1 and overestimates the values of �2

and �3. Also, the posterior coefficients for concrete made using
crushed quartz schist coarse aggregate are different from the co-
efficient for concrete made using crushed limestone coarse aggre-
gate. As noted earlier, the interpretation of the numerical values of
the regression coefficients in case of high positive or negative
correlation between the parameters presents some challenges. In
particular, due to the high negative correlation between �1 and �3,
observations on �1 and �3 may require further experimental in-
vestigations.

The largest COV equals 0.650 �for the parameter �3�. Since it
is significantly larger than s, following the step-wise deletion pro-
cess described in the Model Selection section, we drop �3 log�w�
from the model. The reduced model form is then

Fig. 5. Comparison between measured and predicted Ec and corresp
using quartz schist coarse aggregate. Dotted lines delimit the region

Table 4. Posterior Statistics of �= ��1 ,�2 ,�3� for Concrete Made Using
Crushed Quartz Schist Coarse Aggregate with Volume Ranging from 35.7
to 40% by Volume

Correlation
coefficient

Parameter
Original
values Mean

Standard
deviation �1 �2 �3

�1 −3.15 0.830 4.85 1.0 0.28 −0.98

�2 0.500 0.462 0.0391 0.28 1.0 −0.31

�3 1.50 0.97 0.631 −0.98 −0.31 1.0
904 / JOURNAL OF MATERIALS IN CIVIL ENGINEERING © ASCE / OCTOB
log�Ec� = �1 + �2 log�fc�� + �� �13�

Reassessing the reduced model, we obtain that the posterior dis-
tribution of �2 is now vs2�v

−2 with v=23 and s=0.047, which
indicates no appreciable deterioration of the model accuracy.
Table 5 summarize the posterior statistics of �= ��1 ,�2�

While in the case of concrete made using limestone aggregate
concrete log�w� is an important explanatory function, in the case
of concrete made using quartz schist coarse aggregate,
log�fc���only explanatory function that is statistically significant.
Since the largest COV equals now 0.079 �for the parameter �2� is
close in magnitude to s, the reduced model is as parsimonious as
possible and all the explanatory functions in the model are impor-
tant to predict Ec. Removing any term would deteriorate the qual-
ity of the model.

Similarly to Fig. 3, Fig. 5 shows a comparison between the
measured and mean predicted values of Ec. For a perfect model,
the experimental data should line up along the 1:1 dashed line.
The dotted lines delimit the region within one standard deviation
of the mean. A plot of the residuals versus the fitted values shows

Table 5. Posterior Statistics of �= ��1 ,�2� for Concrete Made Using
Crushed Quartz Schist Coarse Aggregate with Volume Ranging from 35.7
to 40% by Volume

Correlation coefficient

Parameter Mean
Standard
deviation �1 �2

�1 8.30 0.173 1.0 −0.99

�2 0.480 0.038 −0.99 1.0

g residuals based on full �a�; reduced �b� models for concrete made
one standard deviation of the mean of the probabilistic model.
ondin
within
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that the residuals are randomly distributed with no sign of a pat-
tern and, therefore, of departure from linearity, supporting the
quality of the fit. Also, a comparison of the left and the right plots
show that there is no significant deterioration in the model accu-
racy after removing the explanatory function log�w�.

Similarly to Fig. 4, Fig. 6 plots the predicted Ec using Pauws’
formula �*� and using the proposed model �•� versus the mea-
sured fc�. We can see that Pauws’ formula in case of concrete
made using quartz schist coarse aggregate systematically under-
estimates Ec over the entire range of fc�. The proposed formula is
unbiased and corrects for the systematic errors in Pauws’ formula.

Conclusions

A comprehensive Bayesian framework for constructing probabi-
listic models for the elastic modulus of concrete is formulated.
The models are unbiased and explicitly account for all the
prevailing uncertainties. A method for assessing the model param-
eters using experimental data is described and a Bayesian step-
wise deletion process is proposed to select important explanatory
functions and construct parsimonious probabilistic models. The
identified explanatory functions and the values of their coeffi-
cients provide insight into the underlying behavioral phenomena.

Although the Bayesian framework presented in this paper is
aimed at developing probabilistic models for the elastic modulus
of concrete, the approach is general and can be applied to the
development and assessment of models in many engineering
applications.

As a practical application, this framework is used to �a� ex-
plore the effect of unit weight of concrete, on the elastic modulus
of two different concretes �one made using crushed limestone and
one made using crushed quartz schist coarse aggregates� and to
�b� construct accurate probabilistic models to predict the elastic
modulus of concrete that can be used in practice. It is observed
that, while for concrete made using crushed limestone coarse ag-
gregate with volume ranging from 36.6 to 41.3% by volume is
important to include w in the probabilistic model, for concrete
made using crushed quartz schist coarse aggregate with volume
ranging from 35.7 to 40% by volume, w can be eliminated from
the model form without a significant loss in accuracy of the

Fig. 6. Predicted Ec using Pauws’ formula �*� and using the propose
coarse aggregate
probabilistic model.
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