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Chapter 5 

MICROMECHANICAL MODELS FOR CONCRETE 
 

 

5.1 INTRODUCTION 
In this chapter three micromechanical models will be examined.  The first two 

models are the differential scheme and the Mori-Tanaka model which predict the 
elastic modulus after the load is applied.  The third model is a crack growth 
model which predicts the fracture of materials for a given initial pre-load system 
of cracks and different loading conditions.  The experimental results presented in 
Chapter 4 will be compared to the theoretical models mentioned above. 

5.2 ELASTIC MODULUS MODELS 
There are several methods of predicting the effective macroscopic elastic 

moduli of a microscopically heterogeneous material.  For the broad class of 
materials that consist of inclusions dispersed in a continuous matrix, the effective 
moduli depend on the moduli of the two components: the volumetric 
concentration of the inclusions, and the shape and orientation of the inclusions 
(Zimmerman 1991).  Two of these methods are the differential scheme 
(McLaughlin 1977; Norris 1985) and the Mori-Tanaka (1973) method.  Both 
models take the microgeometry of the materials into account for estimating the 
effect of pores and cracks on the elastic moduli.  In concrete, the shapes of the 
inclusions can be estimated by two important idealized pore shapes, namely the 
sphere and the penny-shaped crack (Mehta and Monteiro 1993). 

Both of these methods will be applied to predict the elastic modulus of 
concrete specimens under different loading conditions.  The initial elastic 
modulus of each of the samples is obtainable from the stress-strain diagrams.  In 
each experiment the loads were applied up to 90% of the ultimate strength, and 
the compressive stress-induced microcracks were preserved by injecting Wood’s 
metal into the specimens while they were under sustained loads.  For each 
experiment, the crack density was determined (see Chapter 4). 
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5.2.1 DIFFERENTIAL SCHEME 
The effective macroscopic elastic moduli of a material can be predicted by 

means of two-dimensional and three-dimensional differential scheme analysis.  
Equation 5.1 is based on the two-dimensional analysis proposed by Salganik 
(1973): 

 E E e D= −
0

2πΓ  (5.1) 

Equation 5.2 is based on the three-dimensional analysis (Zimmerman 1991): 

 E E e D= −
0

16 93Γ /  (5.2) 

Where:  E  = Final elastic modulus 

  E0  = Initial elastic modulus 

  Γ2D  = Crack density in two dimensions 

  Γ3D = Crack density in three dimensions 

The initial and final moduli of elasticity for Experiment #2, which is a uniaxial 
test, can be obtained from the stress-strain diagram: 

 E0
62 625 10= × ×.  psi (18.1 10  MPa )3  

 E = × ×2 375 106.  psi (16.4 10  MPa )3 . 

From Table 4.3, the crack density for the uniaxial specimen is, Γ=0.0919; and 
for the reference (no-load) specimen, Γ=0.0444.  The effective crack density is the 
difference between the crack density prior to and after the test.  Hence, 
ΔΓ=0.0475. 

By applying Salganik’s two-dimensional differential scheme solution 
(Equation 5.1), the final modulus of elasticity can be calculated: 

 ( ) ( )MPa106.15 psi10261.210625.2 360475.06 ××=××= −πeE  

Salganik’s method produces a very accurate prediction of the modulus of 
elasticity, within 5% of the measured value. 
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Since the crack density measurements were performed in two dimensions, 
they should be converted to three-dimensional crack density for the three-
dimensional differential scheme analysis (similar to Schlueter et al. 1991). 

When a plane cuts through a concrete sample, it produces a section which 
contains line cracks.  With respect to two-dimensional measurements, the length 
of these lines is considered to be the crack length, 2a.  However, in three-
dimensional terms, these apparent lengths are not the true measurements of the 
cracks.  Assuming the cracks in three dimensions are idealized to conform to the 
penny-shaped model shown in Figure 5.1, we can establish the relationship 
between the lengths of cracks in three dimensions (2aact. ) and their two 
dimensional lengths (2ameas.). 

0

X

Y
θ

X

Cutting Plane

Idealized  Crack

2aact. 2ameas.

aact. ameas.

 
Figure 5.1  Schematic diagram of an idealized crack 

For an idealized circular penny-shaped crack, we can write: 

 y x aact
2 2 2+ = . 

or y a x aact meas= − =. .
2 2  

The mean value of ameas. , ameas. , can be established from 



CHAPTER 5 MICROMECHANICAL MODELS FOR CONCRETE 94

 

∫

∫

=

−
=

act

act

a

act

a

act

meas

adx

dxxa
a

0

0

22
.

.

.

 

Hence dx
a

xa
acta

act
meas ∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

.

0

2

.
. 1  

let  x
a

t
act.

= , then dx a dtact= . .  Substituting in the above equation, 

 dttaa actmeas ∫ −=
1

0

2
.. 1  (5.3) 

But t x
aact

= =
.

cosθ  

 t 2 2= cos θ  

and 1 2 2− =t sin θ  

 1 2− =t sinθ  

Substituting the above in Equation 5.3 will yield: 

 ..

2

0

2
.

2

0
.. 44

2sin2sinsinsin actactactactmeas aadadaa πθθθθθθθ
ππ

=⎟
⎠
⎞

⎜
⎝
⎛ −

=== ∫∫  

 a a aact meas meas. . ..= =
4 1 273
π

 (5.4) 

Equation 5.4 gives the actual length of a crack in three dimensional form as 
derived from the measured length in two dimensions.  The two-dimensional and 
three dimensional crack densities were analyzed, and in some cases a 
relationship was developed between them (Hadley 1976; Batzle et al. 1980; 
Abdel-Gawad 1987; and He and Aherns 1994).  However, the best result is given 
by stereological analysis, as explained below. 
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The number of cracks per unit volume, NV , can be obtained from the 
following equation (Underwood 1968): 

 N N
NV

A

L

=
2 2

π
 (5.5) 

where NA  represents the number of cracks in two dimensions (Table 4.1) and NL  
is the number of intersections of features, i.e. cracks, per unit length of test line 
(for more detail, refer to Chapter 3). 

The crack radius, a, is defined as the ratio of the number of interceptions of 
features per unit length of test line, NL , over the number of interceptions of 
features per unit test area, NA  (Underwood 1968).  Therefore, 

 a N
N

N aNL

A
L A= =  or    (5.6) 

Substituting Equation 5.6 in Equation 5.5 yields: 

 ( ) a
N

aN
NN A

A

A
V ππ

22 2

==  (5.7) 

The three dimensional crack density is defined as: 

 Γ3

3
3

D V
Na
V

N a= =  (5.8) 

substituting Equation 5.7 in Equation 5.8 gives: 

 Γ Γ3
3 2

2
2 2 2

D
A

A D
N
a

a N a= = =
π π π

 (5.9) 

Using Equation 5.9, the two-dimensional crack density can be converted to a 
three-dimensional one.  Hence,  

 ( )( ) 0490.0273.10475.022 2
23 ==Γ=Γ

ππ DD   
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The final elastic modulus can be estimated from Equation 5.2: 

 E e= × × = × ×−2 625 10 2 406 106 16 0 0490 9 6. .( . )/  psi (16.6 10  MPa )3  

The three-dimensional analysis result is 2% above the actual measured value.  
The two-dimensional analysis gives better results. 

The initial and final effective moduli of elasticity for Experiment #5, which is 
a fully confined test, can be obtained from the stress-strain diagram: 

 ′ = × ×E0
61 875 10.  psi (12.9 10  MPa )3  

 ′ = × ×E 1 650 106.  psi (11.4 10  MPa )3 . 

From Table 4.3, the crack density for the fully confined specimen is, Γ=0.0262; 
and for the reference (no-load) specimen, Γ=0.0444.  The effective crack density is 
the difference between the crack density prior to and after the test.  Hence, 
ΔΓ=0.0182. 

Applying Salganik’s two-dimensional differential scheme solution (Equation 
5.1), the final modulus of elasticity can be predicted as: 

 ( ) ( )MPa 102.12 psi10771.110875.1 360182.06 ××=××= −πeEConfined  

Salganik’s method prediction of modulus of elasticity is within 10% of the 
measured value. 

Converting the two-dimensional crack density into the three-dimensional 
one, using Equation 5.9 yields: 

 ( )( ) 0188.0273.10182.022 2
23 ==Γ=Γ

ππ DD   

The final elastic modulus can be estimated from Equation 5.2 

 E eConfined = × × = × ×−1 875 10 1 813 106 16 0 0188 9 6. .( . )/  psi (12.5 10  MPa )3  

The three dimensional analysis result is 9% above the actual measured value. 
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5.3.1 THE MORI-TANAKA METHOD 
Mori and Tanaka (1973) proposed the following equation to predict the elastic 

modulus of a material containing cracks: 

Mori-Tanaka method: ( )Γ+= β10EE  (5.10) 

where: ( )( ) ( )0
2
00 245131016 νννβ −−−=  

and ν0 = Poisson’s ratio 

For concrete, typically ν0 = 0.20, so: 

 ( )[ ]( ) ( ) 78.120.024520.0120.031016 2 =−−−=β  

and for the Mori-Tanaka method: 

 ( )( ) MPa) 10(15.9 psi10309.2
0768.078.11

10625.2 36
6

××=
+

×
=E  

The modulus of elasticity predicted by the Mori-Tanaka model is within 3% 
of the measured value.  For the fully confined specimen,  

 ( )( ) MPa) 10(12.5 psi10816.1
0182.078.11

10875.1 36
6

××=
+

×
=ConfinedE  

The predicted modulus of elasticity is within 10% of the measured value for the 
fully confined condition. 

Table 5.1 represents the summary of the predicted modulus of elasticity 
obtained from the differential scheme and Mori-Tanaka method. 
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Table 5.1  Modulus of elasticity obtained from micromechanical Models 

Concrete 
Specimen 

Measured 
E 

2D 
Differential 

3D 
Differential 

Mori-Tanaka 
Method 

Uniaxial 2.375×106 psi 

(15.6×103  MPa) 

2.261×106 psi 

(15.6×103  MPa) 

2.406×106 psi 

(16.6×103  
MPa) 

2.309×106 psi 

(15.9×103  
MPa) 

Confined 1.650×106 psi 

(11.4×103  MPa) 

1.771×106 psi 

(12.2×103  MPa) 

1.813×106 psi 

(12.5×103  
MPa) 

1.816×106 psi 

(12.5×103  Pa) 

The differential scheme and the Mori-Tanaka model consider the change in 
the overall moduli when a small increment of the inclusion phase is introduced 
in a material.  The corresponding change in the field variables is neglected by the 
Mori-Tanaka model, whereas in the differential scheme the change in the field 
variables is related to the change of the volume fraction of the inclusion.  It has 
been shown that, as the volume fraction goes to zero, the two methods agree 
asymptotically, although their specific predictions may be different, depending 
on the problem (Nemat-Nasser and Hori 1993). 

5.3 CRACK GROWTH SIMULATION MODEL 
Du (1994) has developed a micromechanical model by which, given the initial 

crack conditions in an unloaded specimen, the final cracking state can be 
predicted for different loading conditions.  The experimental results obtained 
and discussed in Chapter 4 will be compared to the theoretical results obtained 
using Du’s crack-growth model. 

Du’s model employs three commonly used fracture criteria.  They are: 

a) The maximum stress criterion, σ-criterion; 

b) The maximum energy release rate criterion, G -criterion; 

c) The minimum strain energy density criterion, S -criterion. 
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The criterion most commonly used for concrete is the maximum energy release 
rate criterion. 

5.3.1 The Maximum Energy Release Rate Criterion, G -Criterion 
The energy release rate is usually defined as the energy released from the 

body per unit crack advance.  A more precise definition (Moran and Sih 1987) 
involves the work input into the crack tip.  Irwin (1956) defined an energy release 
rate, G , which is a measure of the energy available for an increment of crack 
extension.  Considering the plate, shown in Figure 5.2, with a thickness B , and 
containing a crack with a length of 2a . 

2a

P
x

2a

2a+Δa

Δx

(b)

P

x

(a)  
Figure 5.2  (a) Plate with crack 2a ; (b) Load-displacement diagram 

If the plate is subjected to a constant load P, the energy released can be 
expressed by crack growth Δa as (Mehta and Monteiro 1993): 

 GB a P x UeΔ Δ Δ= −   

where ΔUeis the change in elastic energy due to crack growth Δa.  In the limit: 

 GB P dx
da

dU
da

e= −  (5.11) 
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the strain energy Ue   in terms of compliance is given by: 

 ΔU cP
e =

2

2
  

and Equation 5.11 becomes: 

 G P
B

dc
da

=
2

2
 (5.12) 

Where:  G  = energy release rate 

  P = applied load 

  B  = plate thickness 

  c = compliance (displacement/load) 

  a = half-crack length 

Irwin (1957) defined the quantity Gc  as the work required to produce a unit 
increase in crack area, referred to as critical energy release rate.  Gc  is a material 
property and is determined experimentally.  In order to determine whether or 
not a crack will propagate, the value of energy release per unit increase crack 
area, G , is computed.  If the energy release rate is lower than the critical energy 
release rate (G Gc< ), the crack is stable.  Conversely, if G Gc> , the crack will 
propagate.  A condition in which the energy release rate equals the critical 
energy release rate (G Gc= ) is known as metastable equilibrium. 

The stress intensity factor, KI , is defined as: 

 ( )gfaKI σ=  (5.13) 

Where:  KI  = stress intensity factor for mode I (stress length ) 

  σ  = applied stress 

  ( )gf  = a function depending on the specimen and crack 
geometry 
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These two parameters, the energy release rate and the stress intensity factor, 
describe the behavior of cracks.  The former quantifies the net change in potential 
energy that accompanies an increment of crack extension; the latter characterizes 
the stresses, strains, and displacements close to the crack tip.  The energy release 
rate describes global behavior, whereas the stress intensity factor is a local 
parameter.  For linear elastic materials, KI  and Gc  are uniquely related.  
Considering only mode I and plane stress condition, for linear elastic behavior: 

 G K
E

I=
2

 (5.14) 

The critical stress intensity factor, Kc , commonly known as fracture toughness, is 
assumed to be a material property. 

The G -criterion, usually called the maximum energy release rate, states that: 

a) Crack initiation takes place at the crack tip and in a direction with respect to 
the original crack plane. 

b) Crack extension takes place in the direction along which the strain energy 
release rate is maximum. 

c) Crack initiation occurs when the maximum strain energy release rate in a 
direction reaches a critical value. 

5.3.2 Crack Growth and propagation 
The Du model uses the displacement discontinuity method which allows the 

fracture mechanics parameters to be readily computed for a given crack problem.  
By assuming a virtual crack increment, the crack initiation direction can be 
determined by one of the three fracture initiation criteria discussed in the 
previous section.  The crack propagation path can be determined by assuming 
several crack increments.  After each crack increment, the computer program 
recalculates the fracture parameters and the corresponding initial angle of crack 
propagation is determined.  Figure 5.3 is the flow chart of the Du model 
computer program. 
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Input Data:  Initial Crack Length, and Boundary Conditions

Set Fracture Criterion 
(G-Criterion)

Calculate Pre-Stresses at Initial Crack and Assumed 
Crack Increment Elements

Determine Mixed Mode I-II Stress-Intensity Factor 
and Crack Initial Growth Angle

Calculate Strain Energy Release Rate for a Crack 
Increment in any Assumed Direction

Determine Crack Initial Growth Direction from the 
Direction Corresponding  to the Maximum G

If  G      > G

STOP

Increase 
Load

Convert Previous 
Crack Element into Crack 

Tip Element

Renumber Crack and Boundary Elements and Adjust Their Boundary 
Conditions Accordingly

START

YES

max
END

NO
C

 
Figure 5.3 Computer flow chart for the Du model calculations 
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5.3.3 Review of Analytical Micromechanical Model 
The purpose of the Du model is to numerically simulate the behavior of 

stochastic distributions of heterogeneous microcracks.  This behavior is difficult 
to model using analytical models.  Du’s micromechanical model is based on the 
idea that frictional sliding along pre-existing cracks results in the formation of 
tension cracks at their tips.  The basis for the model is the displacement 
discontinuity model of Crouch and Starfield (1983).  This model is based on the 
analytical solution to the problem of a constant discontinuity in displacement 
over a finite line segment in the x,y plane on an infinite elastic solid.  A 
displacement discontinuity can be visualized physically as a line crack whose 
opposing surface have been displaced relative to one another.  In the case under 
consideration here, surfaces are displaced relatively by a constant amount along 
the entire crack.  However, in general, one could consider an arbitrary 
distribution of relative displacement. 

This method is based on the notion that one can make a discrete 
approximation of a continuous distribution of displacement discontinuity along 
a crack.  That is, a crack can be divided into a series of N  elements (boundary 
elements) and the displacement discontinuity assumed to be constant over each 
one.  On the basis of the analytical solution for a single, constant element  
displacement discontinuity, we derive a numerical solution to the problem by 
summing up the effects of all N  elements.  When the distribution of 
displacement discontinuity along the crack is not known, the distribution of 
traction applied to the crack surfaces must be known in order to define the 
problem properly.  The values of the element displacement discontinuities 
necessary to produce these tractions, are then sought, element by element along 
the crack (Crouch and Starfield 1983). 

5.3.4 Distribution of Microcracks in the Material 
The microcracks yielded by Experiment #1, the no-load experiment, were 

used as the initial input microcracks in the Du model.  Figure 5.4 is the histogram 
of the microcracks in that experiment. 
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Crack Lengths of Experiment #1
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Figure 5.4  Histogram of entire microcrack length distribution for the no-load 

experiment on normal-strength concrete 

Table 5.2 is the tabulation of the microcracks used in the model. 

Table 5.2  The microcrack lengths used in the Du model 

NORMAL-STRENGTH CONCRETE 

Crack Length (mm) Frequency 

0.4 26 
0.5 18 
0.6 4 
0.7 4 
0.8 3 
0.9 1 
1.0 1 
1.3 1 
1.5 1 

Total 59 

Crack lengths smaller than 0.4 mm are ignored and, because crack apertures are 
negligibly small, line cracks were assumed. 
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The Du model uses the Monte Carlo technique to generate a distribution of 
line cracks.  Monte Carlo simulation is used for problems involving random 
variables with known (or assumed) probability distribution. 

Because of the assumption of a uniformly random distribution of initial crack 
locations and orientation, an algorithm has been developed to generate a similar 
distribution.  For each crack generated, three random numbers are initially 
picked to determine the crack position (x,y), orientation, and according to Table 
5.2, a non-random crack generation is implemented to generate a distribution of 
crack length L  (Kemeny 1991).  The crack orientations are between 0° and 90°.  A 
tree-cutting algorithm is used to eliminate cracks that intersect.  Figure 5.5 is an 
illustration of the cracks generated in a concrete specimen with rectangular 
boundaries. 

 
Figure 5.5  The random cracks generated in concrete specimen 
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5.3.5 Parameters Used in the Crack Growth Model 
The CEB-FIP model code 1990 recommends the use of the following expression 

for the energy release rate: 

 ( ) 7.0
cmocmff ffG α=  (5.15) 

where α f  is a coefficient which depends on the maximum aggregate size dmax, 
which for 3/8 inch (10 mm) MSA is 0.02 Nmm/mm2, and fcmo  is equal to 10 MPa 
(Mehta and Monteiro 1993).  fcm  is the average 28-day compressive strength.  The 
strength data that is available is the strength after more than 2 years (840 days).  
In order to obtain the 28-day compressive strength of the concrete specimen, the 
CEB-FIP model code (1990) suggests the following relationship: 

 ( ) cmcm f
tt

stf
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

21

1/
281exp  (5.16) 

where ( )tfcm = mean compressive strength at age t days 

 fcm  = mean 28-day compressive strength 

 s = coefficient depending on the cement type, such as s=0.25 for 
 normal hardening cement 

 t1  = 1 day 

 ( ) cmf
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

21

840
28125.0exppsi 7,500 MPa 7.51  

 ( )psi 6,100 MPa 14.42=cmf  

By substituting in equation 5.15, 

 ( ) 1-
7.0

1-3 Nm 7.54
MPa 10

MPa 42.14Nm 100.02 =⎟
⎠
⎞

⎜
⎝
⎛×=fG   
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Irwin (1957) showed that the energy release rate and the stress intensity factor 
approaches are equivalent.  For linear elastic behavior, considering only mode I 
and plane stress condition: 

 G K
EI

I=
2

 (5.17) 

For E=2.625×106 psi (18.1 GPa), 

 ( )( )  mMPa 1 Pa 101.18Nm 7.54. 91- ≈×== EGK fI   

A Poisson’s ratio,ν , value of 0.2, and a coefficient of friction, μ , value of 0.35 
are assumed for the concrete specimen.  The representative parameter values for 
the concrete specimen are shown in Table 5.3: 

Table 5.3  Material properties for Concrete specimen 

Crack Orientation Random 

Crack Location Random 

Crack Length, 2a 0.4-1.5 mm 

Poisson’s Ratio, ν  0.2 

Young’s Modulus, E  18.1 GPa 

Fracture Toughness, KIC  1 MPa m  

Crack Density, Γ  0.0444 

Friction Coefficient, μ  0.35 

Crack Initial Angle, θ 4.9° 
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All representative parameter values for concrete were taken from Table 5.3 
except the crack lengths which were taken from Table 5.2.  Figure 5.6 shows the 
concrete specimen’s cross section with the boundary dimensions for the input 
algorithm. 

(Xmin,Ymax=0.0,0.203)

(Xmax,Ymax=0.102,0.203)

(Xmax,Ymin=0.102,0.0)

(Xmin,Ymin=0.0,0.0)

X

y

 
Figure 5.6  Concrete specimens boundary input in algorithm 

The algorithm above generates the crack pattern, which represents the preload 
cracking status. 

5.3.6 Program Overview 
As mentioned earlier, the Du model was developed by making a series of 

modifications to the code of the displacement discontinuity method of Crouch 
and Starfield (1983).  The computer program is called MCPP (Multiple Crack 
Propagation Program).  It is a two dimensional boundary element code which 
simulates the multiple crack growth, interaction, and coalescence in materials. 
MCPP is a command-driven (rather than menu-driven) computer program. 
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The input file is prepared from the rectangular boundary of the concrete 
specimen’s cross section, shown in Figure 5.7, and its information is kept in a file 
named Bouninput.dat1. 

I

II

III

IV

 
Figure 5.7  Rectangular boundary 

The parameters which are read into the program from Bouninput.dat1 are: 

Numbs, Xlow, Ylow, Xlow, Yhigh, An low, An high, Kode, BVS, BVN, Al low, Al.high. 

Where Numbs = number of straight line boundary segment used to define  
 boundary contours. 
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 (Xlow, Ylow) and (Xhigh, Yhigh) are the beginning and ending 
coordinates of boundaries I, II, III, IV. 

 Kode = 1 indicates that σ s  and σn are prescribed. 

 BVS = resultant shear strength (σ s ) or shear displacement (us ) 

 BVN = resultant normal-strength (σn) or normal displacement (un) 

 An low = minimum angle = 0° 

 An High = maximum angle =180° 

 Al low = minimum crack length 

 Al High = maximum crack length 

For program running procedures, refer to Appendix B. 

5.3.7 The Crack Growth Simulation Model Results 
Using the random crack distribution  shown in Figure 5.5, and employing the 

Du model, with the axial displacement of 0.00001 meters for 50 iteration, will 
produce the image shown in Figure 5.8.  The material properties used are 
tabulated in Table 5.3.  The material in the model was subjected to an axial strain 
of 0.25%. 

( )( )
⎟
⎠
⎞

⎜
⎝
⎛ === strain %25.00025.0

meter 203.0
iterations 50meter 00001.0

aε  

The crack density in Figure 5.8 was measured to be Γuniaxial = 0 2173. . 
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Figure 5.8  Crack propagation simulation for uniaxial loading 

The same no-load model in Figure 5.5 was then subjected to a confined test, 
with the same number of iteration and axial strain.  The result is shown in Figure 
5.9.  It is evident that the number of cracks propagating from the original cracks, 
and also the number of post-load generated cracks was reduced.  The resulting 
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crack density was measured to be Γconfined = 0 1878. .  There was about 15% 

reduction in crack density due to presence of confining stress. 

 
Figure 5.9  Crack propagation simulation for fully confined condition 
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The Du model results are consistent with the experimental results which were 
presented in Chapter 4.  The experimental results showed that the crack density 
reduced when confining stress was used.  The Du model also showed the same 
behavior.  Experimental measurements indicated that the average crack length 
distribution strongly depends on the confining stress.  The results obtained from 
the Du model, also indicates that the average crack length decreased when 
confinement was used.  Most cracks in the Du model have an orientation 
subparallel to the direction of maximum applied stresses.  The definite crack 
orientation in the Du model is due to the fact that there are no aggregates in the 
model and it is similar to testing a mortar specimen.  The application of the Du 
model to concrete crack growth simulation should be enhance to include hard 
inclusions, i.e. aggregates, in the model. 


