Ph.D. THESIS UCB/SEMM-94/19	STRUCTURAL ENGINEERING, MECHANICS, AND MATERIALS
	GENERATION AND INTERACTION OF COMPRESSIVE STRESS-INDUCED MICROCRACKS IN CONCRETE
	by
	KAMRAN MOSTASHAR NEMATI
	Committee in charge:
	Professor Paulo J. M. Monteiro, Chair Professor Ben C. Gerwick, Ir.
	Professor Robert Brady Williamson Professor Alice M. Agogino
DECEMBER, 1994	DEPARTMENT OF CIVIL ENGINEERING University of California, Berkeley Berkeley, California

The dissertation of Kamran Mostashar Nemati is approved:

2/14/94

Professor Paulo J.M. Monteiro, Chair

Date

Lenna 12/11/94

Professor Ben C. Gerwick, Jr.

Date

 $\frac{12/10/94}{\text{Date}}$ Kebert Broch Professor Robert Brady Williamson

Mo

Professor Alice M. Agogino

Date

12 Dec 94

University of California at Berkeley

1994

Generation and Interaction of Compressive Stress-Induced Microcracks in Concrete

Copyright© (1994)

by

Kamran Mostashar Nemati

ABSTRACT

Generation and Interaction of Compressive Stress-Induced Microcracks in Concrete

by

Kamran Mostashar Nemati

Doctor of Philosophy in Civil Engineering University of California at Berkeley Professor Paulo J. M. Monteiro, Chair

This thesis presents the results of experimental and theoretical studies of the micromechanical behavior of concrete under different loading conditions. Cylindrical specimens of normal and high-strength concrete were subjected to testing under uniaxial and confined compression. An alloy with a low melting point was used as a pore fluid. At the stress or strain of interest, this alloy was solidified to preserve the stress-induced microcracks as they exist under load.

Scanning electron microscopy (SEM) was employed to capture images from the cross sections of the concrete specimens. These images were then used to study the generation, orientation, density, length, and branching of the compressive stress-induced microcracks and the effect of confinement on microcrack behavior. The microcracks were generated by a number of different mechanisms and had an orientation that was generally within 15 degrees of the direction of the maximum applied stress. The density, average length, and branching of the microcracks decreased as the confining stress increased. The confining stress showed a pronounced influence on interfacial cracks, also known as transition zone cracks, which occur at the interface of cement paste and aggregate. The amount of interfacial cracking decreased significantly as the confining stress was increased. Stereological analysis which interprets threedimensional structures by means of two-dimensional sections, was used on the computerized images. Crack orientation, crack surface area, and crack length were determined stereologically. The resulting stereological measurements indicated that the crack orientation, surface area, and length decreased as the confining stress increased.

Three micromechanical models, the differential scheme, the Mori-Tanaka method, and a crack growth simulation model were used to examine the experimentally obtained data the against theoretically developed micromechanical models. The final modulus of elasticity for the concrete specimens was calculated using the first two models, based on the measured crack densities, which gave an approximation that was very close to the actual measured moduli. The crack growth model was used to generate and propagate microcracks for uniaxial and fully confined cases, and it also revealed behavior similar to that shown in the experimental results.

Paulo J. M. Monteiro Chairman, Thesis Committee

To my parents

ACKNOWLEDGMENT

During my years of graduate study at Berkeley many people have given me support, guidance, and friendship. Foremost among these is my adviser, Professor Paulo Monteiro. He has shared his great creative and analytical skills with patience, endless encouragement, and generosity. It has been my very good fortune to have had such a conscientious and inspirational adviser.

Much credit also goes to my mentor and exemplar, Professor Ben C. Gerwick, Jr., who inspired me to study concrete. I owe a great deal of my success to Professor Gerwick. I would also like to thank the other members of my research committee, Professors Robert Brady Williamson and Alice M. Agogino for their detailed and thoughtful comments.

I wish to express appreciation to Professor Neville G. W. Cook of the Department of Mining Engineering and Dr. Larry Myer of Lawrence Berkeley Laboratory for their guidance in designing the test apparatus and for advice on experimental procedures. Special thanks goes to Mr. William MacCracken of the Department of Civil Engineering for his insight and ingenuity in conducting experiments.

The hospitality of Dr. Karen Scrivener during my many visits to the Imperial College of Science and Technology in London is greatly appreciated. Dr. Scrivener's advice was extremely valuable and pivotal. I also wish to thank Dr. Stephen Laing for his help in computer programming and for his friendship.

I am grateful to both Professor John Kemeny of the University of Arizona, and Dr. Robert Zimmerman of Lawrence Berkeley Laboratory, for their help with micromechanical modeling of fractures in concrete.

I would like to express my deepest gratitude and appreciation to ICF Kaiser Engineers, Inc. In particular I wish to thank Mr. Michael Jones and Mr. Richard Nunes for their patience, support, and encouragement, as well as for allowing me to maintain full-time employment while completing my graduate work. I could not have finished my doctorate without their support. I would also like to thank Diane Michelle Williams, Dr. Edgar Becker, Mike Phillips, and Steve Sims for their friendship and encouragement.

The years I have spent in residence at the International House at Berkeley have constituted the best time of my life. I am exceedingly lucky to have made such great friends there as Peter Kennedy, Orla Feely, Jerry Murphy, Cormac Conroy, Bo Petterson, Nathalie Richart, Michel Chalhoub, Catherine Faure, Dariush Mirfendereski, Alison Green, Nils Tarnow, Hamid Savoj, and Yutaka Tanaka.

Finally, I would like to thank my late father and my mother for their constant concern, support, and encouragement throughout my life. There is no better way to express my appreciation than to dedicate this thesis to my parents.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1	Background	.1
1.2	Methods of Study of Microcracking	.4
	1.2.1 Early Methods	.5
	1.2.2 Proposed Method	.8
1.3	Objectives	.9
1.4	Summary of the Chapters	10

CHAPTER 2 EXPERIMENTAL TECHNIQUE

2.1	Introduction
2.2	Concrete Specimens
2.3	Confinement15

	vii
2.4 Test Equipment	18
2.4.1 Pedestal	18
2.4.2 Vessel	19
2.4.3 Piston	19
2.4.4 Top Cap	20
2.4.5 Heater	21
2.5 Wood's Metal	21
2.6 Experimental Procedure	22
2.7 Experiments Conducted	28
2.8 Specimen Preparation	29
2.8.1 Cutting	29
2.8 2 Polishing	30
2.8.3 Specimen Identification	31
2.8.4 Preparation for Scanning Electron Microscope (SEM) Analys	sis32

CHAPTER 3 SCANNING ELECTRON MICROSCOPY, IMAGE ANALYZER, AND STEREOLOGY

3.1	Introduction	33
3.2	Scanning Electron Microscopy	.33
3.3	Image Analyzer	.35
3.4	Stereology and Concrete	.37
	3.4.1 Introduction	.37
	3.4.2 Basic Measurements	.37

3.4.2.1 Number of point intersections, P_L	
3.4.2.2 Surface-to-Volume ratio, S_V	
3.4.2.3 Length of line per unit area, L_A	41
3.4.3 Degree of Orientation	44
3.4.4 Application of Stereology To Concrete Fracture Mechanics	45

viii

CHAPTER 4 OBSERVATION RESULTS AND ANALYSIS OF DATA

4.1	Introduction	.50
4.2	Characterization of Microcrack Initiation	.50
4.3	Orientation of Microcracks	.56
4.4	Microcrack Density Distribution	.64
4.5	Microcrack Length Distribution	.72
4.6	Microcrack Branching	.81
4.7	Interfacial Cracks	.83

CHAPTER 5 MICROMECHANICAL MODELS FOR CONCRETE

5.1 Introduction		91
5.2 Elastic Modulus Mod	els	91
5.2.1 Differential Scher	ne	92
5.2.2 Mori-Tanaka Mo	del	96
5.3 Crack Growth Simula	tion Model	
5.3.1 The Maximum E	Inergy Release Rate Criterion, G-Criterion	
5.3.2 Crack growth ar	nd Propagation	
Kamran M. Nemati	Ph.D. Thesis in Civil Engineering, 1994	UC Berkeley

5.3.3	Review of Analytical Micromechanical Model	.102
5.3.4	Distribution of Microcracks in the Material	.102
5.3.5	Parameters Used in the Crack Growth Model	.105
5.3.6	Program Overview	.108
5.3.7	The Crack Growth Simulation Model Results	.110

CHAPTER 6 SUMMARY, CONCLUSION, AND RECOMMENDATIONS

6.1	Summary of the Work Performed1	14
6.2	Summary of Findings and Conclusion1	15
6.3	Recommendations for Future Research1	17

REFERENCES

APPENDICES		129
Appendix A:	Experiments Conducted	130
Appendix B:	Image Analyzer Computer Programs	134
Appendix C:	Test Cell Design	155

LIST OF FIGURES

Figure 1.1	Polished section from a concrete specimen2
Figure 1.2	Diagrammatic representation of the transition zone and bulk cement paste in concrete
Figure 2.1	Normal-strength concrete specimens used in the experiments14
Figure 2.2	Pedestal
Figure 2.3	Vessel19
Figure 2.4	Piston20
Figure 2.5	top Cap20
Figure 2.6	Wood's metal21
Figure 2.7	Diagram of the test apparatus23
Figure 2.8	Heating scheme diagram24
Figure 2.9	Schematic diagram of the test assembly24
Figure 2.10	Pouring molten metal into the vessel25
Figure 2.11	Inserting the thermocouple into the top cap25
Figure 2.12	Placing the heater and the insulation26
Figure 2.13	Temperature and load control devices26
Figure 2.14	Nitrogen dispensed through a high pressure regulator27
Figure 2.15	Post-experiment cooling of the cell27
Figure 2.16	Extrusion of concrete specimen
Figure 2.17	Raising the vessel

	xi
Figure 2.18	Raising the vessel by aircraft cable
Figure 2.19	Specimen prior to and after Wood's metal injection
Figure 2.20	Axial cut of the concrete cylinder
Figure 2.21	Lateral cut of the concrete cylinder29
Figure 2.22	Specimen extraction
Figure 2.23	A lateral section showing macrocracks filled with metal alloy30
Figure 2.24	Specimen placed on glass and aluminum base for SEM study30
Figure 2.25	Specimen extraction and numbering scheme
Figure 3.1	Scanning electron microscope (SEM) and Kontron Image Analyzer
Figure 3.2	Flow chart for stereological steps
Figure 3.3	Model of deriving the relationship $S_V = 2P_L$
Figure 3.4	Geometry involved in the determination of the probability that random normals lie between θ and $\theta + d\theta$ 40
Figure 3.5	Model of deriving the relationship $L_A = (\frac{\pi}{2})P_L$ 42
Figure 3.6	Geometry involved in the determination of the probability that elementary segments lie between θ and $\theta + d\theta$
Figure 3.7	A SEM backscatter image46
Figure 3.8	Establishing threshold in histogram46
Figure 3.9	Wood's metal identification by establishing threshold levels in histogram47
Figure 3.10	Crack network47
Figure 3.11	Scrap command47
Figure 3.12	Binary-thinned image of the crack network in concrete48

		xii
Figure 3.13	Array of straight parallel lines	.49
Figure 4.1	SEM micrographs from the no-load experiment	.51
Figure 4.2	SEM micrographs from the partially confined experiment	.52
Figure 4.3	SEM micrographs of microcracks propagating from a pore	.52
Figure 4.3	SEM micrographs of aggregate cracking	.53
Figure 4.5	SEM micrographs from the no-load experiment for high- strength concrete specimen	.54
Figure 4.6	SEM micrographs from the partially confined experiment for high-strength concrete	.55
Figure 4.7	Average crack orientation for normal-strength concrete	.56
Figure 4.8	Average crack orientation for high-strength concrete	.57
Figure 4.9	Crack orientation for normal-strength concrete	.59
Figure 4.10	Crack orientation for high-strength concrete	.59
Figure 4.11	Number of intercepts for smoothed cracks	.60
Figure 4.12	Number of intercepts for smoothed cracks	.60
Figure 4.13	Rose of the number of intersections diagrams for high- strength concrete	.61
Figure 4.14	Rose of the number of intersections diagrams for normal- strength concrete	.62
Figure 4.15(a)	SEM micrographs showing crack tips at higher magnification	.63
Figure 4.15(b)	SEM micrographs showing crack tips at higher magnification	.64
Figure 4.16	Crack density, Γ , as a function of confinement for normal- strength concrete	.66
Figure 4.17	Crack density, Γ , as a function of confinement for high- strength concrete	.66

Figure 4.18	Diagrammatic representation of crack length and crack density at confined and unconfined portions of Experiment #367
Figure 4.19	Diagrammatic representation of crack length and crack density at confined and unconfined portions of Experiment #468
Figure 4.20	Number of cracks as a function of confinement for normal- strength concrete
Figure 4.21	Number of cracks as a function of confinement for high- strength concrete
Figure 4.22	Percent cracked area as a function of confinement for normal- strength concrete
Figure 4.23	Percent cracked area as a function of confinement for high- strength concrete70
Figure 4.24	Crack surface area (S_v) as a function of confinement condition for normal-strength concrete
Figure 4.25	Crack surface area (S_v) as a function of confinement condition for high-strength concrete
Figure 4.26	Crack length as a function of confinement condition for normal-strength concrete
Figure 4.27	Crack length as a function of confinement condition for high- strength concrete72
Figure 4.28	Histogram of microcrack length distributions for the no-load experiment of the normal-strength concrete73
Figure 4.29	Histogram of microcrack length distributions for the uniaxial experiment of the normal-strength concrete73
Figure 4.30	Histogram of microcrack length distributions for the partially confined (1) experiment of the normal-strength concrete74
Figure 4.31	Histogram of microcrack length distributions for the partially confined (2) experiment of the normal-strength concrete
Figure 4.32	Histogram of microcrack length distributions for the fully confined experiment of the normal-strength concrete75

xiv

Figure 4.33	Histogram of microcrack length distributions for the no-load experiment of the high-strength concrete75
Figure 4.34	Histogram of microcrack length distributions for the uniaxial experiment of the high-strength concrete76
Figure 4.35	Histogram of microcrack length distributions for the partially confined experiment of the normal-strength concrete76
Figure 4.36	COV of crack length as a function of confinement for normal- strength concrete77
Figure 4.37	COV of crack length as a function of confinement for high- strength concrete78
Figure 4.38	Stress intensity factors due to local tension P and confining stress, σ_3
Figure 4.39	Stereological measurement of crack length as a function of confinement condition for normal-strength concrete specimens
Figure 4.40	Stereological measurement of crack length as a function of confinement condition for high-strength concrete specimens80
Figure 4.41	3-way and 4-way crack branching nodes
Figure 4.42	Crack branching nodes as a function of confinement for normal-strength concrete
Figure 4.43	Crack branching nodes as a function of confinement for high-strength concrete
Figure 4.44	The flow chart for interfacial crack identification computer program
Figure 4.45	Interfacial crack in the normal concrete specimen subjected to uniaxial loading
Figure 4.46	Scrap with the higher upper limit for the area range
Figure 4.47	Scrap with the lower upper limit for the area range
Figure 4.48	Close the image in Figure 4.4786

Figure 4.49	Open the image in Figure 4.4886
Figure 4.50	Scrap the image in Figure 4.4982
Figure 4.51	Correlate every pixel which is both in figure 4.46 and 4.5087
Figure 4.52	Correlating every pixel that is either in Figure 4.46 or 4.49 but not common to them87
Figure 4.53	Scrap the image in Figure 4.5282
Figure 4.54	Scrap the image in Figure 4.5288
Figure 4.55	Crack smoothing of the image in Figure 4.5488
Figure 4.56	Effect of confinement on interfacial microcracks of normal- strength concrete
Figure 4.57	Effect of confinement on interfacial microcracks of high- strength concrete90
Figure 5.1	Schematic diagram of an idealized crack93
Figure 5.2	(a) Plate with crack 2 <i>a</i> ; (b) Load-displacement diagram100
Figure 5.3	Computer flow chart for the Du model calculations102
Figure 5.4	Histogram of entire microcrack length distribution for the no-load experiment on normal-strength concrete104
Figure 5.5	The random cracks generated in concrete specimen105
Figure 5.6	Concrete specimen boundary input in algorithm108
Figure 5.7	Rectangular boundary109
Figure 5.8	Crack propagation simulation for uniaxial loading111
Figure 5.9	Crack propagation simulation for fully confined condition112

XV

LIST OF TABLES

Table 2.1	Normal-strength concrete mix design1	13
Table 2.2	High-strength concrete mix design1	13
Table 2.3	Experiments conducted	<u>2</u> 9
Table 3.1	List of basic stereological symbols and their definition	38
Table 4.1	Number, length, and orientation of microcracks	57
Table 4.2	Data from the stereological analysis5	58
Table 4.3	Crack density for different loading conditions	65
Table 4.4	Coefficient of variation of cracks length	77
Table 4.5	Percentage of interfacial cracks	39
Table 5.1	Modulus of elasticity obtained from micromechanical Models9	98
Table 5.2	The microcrack lengths used in the Du model10)4
Table 5.3	Material properties of concrete specimen10)7

NOMENCLATURE

Å	Angstrom
f_c'	Ultimate Strength
FM	Fineness Modulus
GPa	Giga Pascal
К	Coefficient of Permeability
KN	Kilo Newton
lb	Pound
HRWR	High Range Water Reducer
LEFM	Linear Elastic Fracture Mechanics
MPa	Mega Pascal
μm	Micrometer (10 ⁶ m)
MSA	Maximum Size Aggregate
pcf	Pounds per Cubic Feet
pcy	Pounds per Cubic Yard
psi	Pounds per Square inch
RHA	Rice Husk Ash
SEM	Scanning Electron Microscope
yd	Yard