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ABSTRACT 
 

 

Generation and Interaction of Compressive 
Stress-Induced Microcracks in Concrete 

by 

Kamran Mostashar Nemati 

Doctor of Philosophy in Civil Engineering 
University of California at Berkeley 

Professor Paulo J. M. Monteiro, Chair 

This thesis presents the results of experimental and theoretical studies of the 
micromechanical behavior of concrete under different loading conditions.  
Cylindrical specimens of normal and high-strength concrete were subjected to 
testing under uniaxial and confined compression.  An alloy with a low melting 
point was used as a pore fluid.  At the stress or strain of interest, this alloy was 
solidified to preserve the stress-induced microcracks as they exist under load. 

Scanning electron microscopy (SEM) was employed to capture images from 
the cross sections of the concrete specimens.  These images were then used to 
study the generation, orientation, density, length, and branching of the 
compressive stress-induced microcracks and the effect of confinement on 
microcrack behavior.  The microcracks were generated by a number of different 
mechanisms and had an orientation that was generally within 15 degrees of the 
direction of the maximum applied stress.  The density, average length, and 
branching of the microcracks decreased as the confining stress increased.  The 
confining stress showed a pronounced influence on interfacial cracks, also 
known as transition zone cracks, which occur at the interface of cement paste and 
aggregate.  The amount of interfacial cracking decreased significantly as the 
confining stress was increased.  Stereological analysis which interprets three-
dimensional structures by means of two-dimensional sections, was used on the 
computerized images.  Crack orientation, crack surface area, and crack length 
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were determined stereologically.  The resulting stereological measurements 
indicated that the crack orientation, surface area, and length decreased as the 
confining stress increased. 

Three micromechanical models, the differential scheme, the Mori-Tanaka 
method, and a crack growth simulation model were used to examine the 
experimentally obtained data against the theoretically developed 
micromechanical models.  The final modulus of elasticity for the concrete 
specimens was calculated using the first two models, based on the measured 
crack densities, which gave an approximation that was very close to the actual 
measured moduli.  The crack growth model was used to generate and propagate 
microcracks for uniaxial and fully confined cases, and it also revealed behavior 
similar to that shown in the experimental results. 

            
Paulo J. M. Monteiro 
Chairman, Thesis Committee 
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