BEHAVIOR OF MARBLE UNDER COMPRESSION

By C.-T. Chang,' P. Monteiro,” K. Nemati,” and K. Shyu*

ABSTRACT: Results of experimental and theoretical studies of the micromechanical behavior of marble under
compression are presented. A cylindrical marble specimen was submerged in a molten metal alloy under com-
pression and the alloy was driven into voids and fractures by pore pressure. The alloy was solidified at a certain
stage of the experiment in order to preserve the geometry of microcracks as they existed under load and to
distinguish these cracks from those generated during sample polishing. With a surface tension of 400 mN/m,
the alloy could penetrate into flat cracks with apertures as fine as 0.08 pum under a pore pressure of 10.3 MPa
(1,500 psi). This technique also facilitated observation of the microcracks in three dimensions. A comprehensive
image analysis was performed on the cracking pattern developed in the marble samples. The propagation of the
cracking process was modeled using nonlinear discontinuous deformation analysis (DDA) with a finite-element

meshed block system.

INTRODUCTION

The identification of cracks induced by loading and unload-
ing are important in understanding the mechanisms for the
generation, propagation, and interaction of stress-induced mi-
crocracks. Marble contains many discontinuities ranging from
microcracks and pores through joints to bedding planes and
faults. All of these discontinuities contribute to make marble
strong in compression, weak in tension, and permeable to flu-
ids.

It is important to understand how the formation, growth,
and interaction of microcracks leads to macrofracture. Cracks
induced under a compressive stress field are of the most in-
terest because marbles are under compressive stress most of
the time. The effect of cracks and imperfections on the be-
havior of rocks has been studied by many researchers. Mc-
Clintock and Walsh (1962) used a Griffith approach to predict
the influence of cracks on the strength of rock; Walsh (1965)
developed micromechanical models to incorporate the effect
of cracks on the elastic moduli of the rock; Nemat-Nasser
(1985) used a geometric probability approach to characterize
and analyze microcracks in rocks; and Hoek and Bieniawshi
(1965) studied the brittle fracture propagation in rock under
compression. The understanding of the microstructure and mi-
cromechanics of marble is becoming increasingly important
for the prediction of durability and integrity of thin-set marble
panels (Cohen and Monteiro 1991).

This paper presents direct observations of the size, orien-
tation, and interaction of microcracks in a marble specimen as
they exist under load. The proposed method involves the ap-
plication of a metal in liquid phase, known as Wood’s metal,
that has a melting point below the boiling point of water, to
preserve the microstructure of stress-induced microcracks in
marble. Used in conjunction with scanning electron micros-
copy (SEM), this application has made possible the detailed
observation of microcracks in marble as they exist under load.

Named after the astronomer who used an alloy of bismuth,
lead, tin, and cadmium to create a perfect parabolic surface
for astronomical observations, Wood’s metal has been used in
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the past few years to study the microstructure of different ma-
terials. Yadev et al. (1984) used Wood’s metal to study pore
fluid porosimetry and to measure contact areas and voids be-
tween the surfaces of natural fractures. Zheng (1989) used
Wood’s metal to fill voids and microcracks in elastic rock
specimens during loading, and solidified it before unloading
to preserve the microstructure in specimens under load. Ne-
mati (1994) used Wood’s metal to study the generation and
interaction of compressive stressed-induced microcracks in
concrete. The advantage of such an alloy is that it can be
injected into voids and stress-induced microcracks at the de-
sired stress level, then solidified at any stage of the experiment
to preserve, in three-dimensional form, the geometry of the
microcracks induced at any given stage of the experiment.

This paper also develops a method to model the crack prop-
agation of a marble sample under load. The model is based
on Shi’s (1988) discontinuous deformation analysis incorpo-
rated with finite-element mesh and nonlinear material behav-
ior. As an example, an image of the crack pattern in the spec-
imen obtained using Wood’s metal technique is used as the
initial configuration for the computational model. The com-
puter simulation indicates that the model predicts crack evo-
lution fairly well.

MODELING OF DISCONTINUOUS DEFORMATION

After the original development of the finite-element method
(FEM), practical discontinuity problems were also taken into
account in numerical analysis [see Zienkiewicz and Taylor
(1991)]. Goodman et al. (1968) developed the ‘‘jointed ele-
ment’’ and applied it extensively in rock engineering. Later,
Cundall (1971, 1988) introduced the distinct-element method,
which is now widely used for jointed or blocky rock. Unlike
FEM, these two methods are force methods that incorporate
fictitious forces to reach the convergence criteria of block
overlapping and to reach equilibrium. The displacement-based
method—discontinuous deformation analysis (DDA)—was
developed by Shi (1988). The primary function of DDA is to
solve large displacements and deformations of a discontinuous
block system. For each block, rigid body translation and ro-
tation accompanied by axial and shear deformations are used
to describe the motion of the entire block system. Sliding,
opening, and closing of block interfaces are also allowed. Like
FEM, this method uses minimization of the total potential en-
ergy to reach equilibrium in the forward model. In the back-
ward model, it uses a ‘‘least-square’’ minimization to back-
calculate the global configuration of the block system from
measured data.

In summary, DDA deals with discontinuous problems and
FEM with continuous ones; the difference between a ‘‘block”’
in DDA and an ‘‘element’’ in FEM must be distinguished. For
example, FEM uses nodes to link the elements together, and
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common nodes are shaped between two adjacent elements,
which makes FEM a continuous model. In DDA, all blocks
are isolated and bounded by preexisting discontinuities. When
blocks are in contact, Coulomb’s law applies to the contact
surface, and the simultaneous equilibrium equations are se-
lected and solved for each loading or time increment. The
blocks in DDA can be either convex or concave (or even mul-
ticonnected polygons with holes), whereas FEM usually only
encompasses standard-shaped elements.

The stability of whole mechanical systems in the real world
comes mainly from inertia forces and friction forces. DDA
follows these laws and places them within the realm of me-
chanical analysis, thus stabilizing the numerical computation.
When forces of inertia are taken into account, time should be
considered as a parameter. Therefore, DDA is truly a numer-
ical dynamic model. Because the assumption of infinitesimal
displacement theory needs to be fulfilled in linear-elastic me-
chanics, the choice of very small time intervals should be spec-
ified. When the total potential energy of all the stresses and
external forces is minimized, the submatrices of the inertia
force terms have the following properties: (1) They are two
orders of magnitude higher than internal stress or stiffness sub-
matrices; (2) the coefficient terms of such matrices are pro-
portional to (1/time?); and (3) they are concentrated at the di-
agonal positions in the global coefficient or stiffness matrix.
Thus, large numbers are distributed in all diagonal terms in
the global stiffness or coefficient matrix, and the assumption
of infinitesimal displacement theory is fulfilled. Besides play-
ing a dominant role in the global stiffness matrix, inertia forces
also play an important role in resisting rigid body motion,
which is indispensable in dealing with the motions of a dis-
continuous block system. When two blocks lose contact, they
will depart from each other with high speed if inertia is not
considered in the numerical analysis. In this case, the assump-
tion of infinitesimal displacement theory will not be satisfied,
and divergence will occur in numerical calculations.

DDA is unique due to the concept of ‘*block system kine-
matics,”’ which regulates the movements of all the blocks, or
finds the locations of all contacts among the blocks. Because
the infinitesimal displacement theory is adopted, the rigid body
rotation and the deformations of each block can be approxi-
mated using the coordinate dependent linear functions de-
scribed here. If the locations of all contact forces are found,
the governing equations of the motions of the block system
become simultaneous linear equations. Shi’s (1988) block sys-
tem kinematics uses the following constraints to obtain the
contact locations: no tension and no penetration between
blocks. The mathematical descriptions of both constraints are
given by a set of inequalities. Although minimizing the total
potential energy with inequality constraints is a difficult non-
linear problem, Shi was able to break through the numerical
impasse. When the block system moves and deforms, the
blocks are in contact only along the boundary, and the non-
penetration inequalities can be transformed into the equations
when two blocks are in contact.

There are three different kinds of contacts between blocks
in the two-dimensional case: angle to edge, angle to angle, and
edge to edge (Fig. 1). The edge-to-edge case can be trans-
formed to two angle-to-edge contacts. An angle-to-edge con-
tact is only possible if the following conditions are satisfied:
(1) The distance from the angle vertex to the edge is less than
twice the maximum displacements of points of all blocks; and
(2) there is no overlapping when the angle vertex translates to
the edge without rotation. An angle-to-angle contact is only
possible if the following conditions are satisfied: (1) The dis-
tance between the vertices of two angles is less than twice the
maximum displacements of points of all blocks; and (2) there
is no overlapping when two angles are translated without ro-
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tation until the vertices coincide. Therefore, the contract prob-
lem is reduced to point-line crossing inequalities.

When interpenetration occurs at a given position, a ‘‘lock”
is applied. A pair of stiff springs are added from the point that
lies along the directions normal and paralle! to the reference
line. Coulomb’s friction law will determine whether to keep
or remove the other spring which is parallel to the reference
line. By adding very stiff springs, or penalties, to lock the
movements in one or two directions for the position of inter-
penetration, the penetration constraint equations can be im-
posed on the global governing equations. The physical mean-
ing of applying stiff springs is to push back the invading angle
along the shortest path. Accordingly, if a tensile contact force
occurs between two blocks, the blocks will separate from each
other after removal of the locks; hence, the nontension con-
straining inequalities can be reduced to the process of adding
or removing the locks. Therefore, the so-called open-close it-
erations repeatedly select the locked positions, or unlock the
constraining ones, until the condition of no penetration and no
tension are satisfied for all contacts among the blocks. All the
penalty submatrices are then imposed into the global stiffness
matrix.

In DDA, Coulomb’s law is used to calculate the shearing
forces at the contact and is the criterion to evaluate the sliding
or locking between the blocks. When the displacement (d) of
the point (P,) normal to the reference line (P,P;) is positive
[Fig. 2(a)], the normal component of the contact force is ten-
sile; therefore, no lock or stiff spring is applied and the contact
is opened. If the displacement is negative [Fig. 2(b)], the nor-
mal contact force is compressive and the contact is closed.
When the shear component of the contact force is large enough
to cause sliding, a stiff spring normal to the reference line is
applied to allow sliding to take place along the reference edge.
In contrast, if the shear component of the contact force is less
than that calculated from Coulomb’s law, the contact spring
will be fixed in both directions and no sliding is permitted.
Friction forces between the interfaces of blocks are obtained
from the result of open-close iterations of block kinematics in
the block system. The energy corresponding to the motion of
the sliding forces represents the only energy consumption con-
sidered in the original DDA formulation. Energy can also be
dissipated when nonlinear material behavior is included.

Although DDA considers both statics and dynamics, the
only difference between these two cases is that the static com-
putation assumes that the velocity is zero at the beginning of
each time step, while the dynamic computation inherits the
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FIG. 1. Different Kinds of Contacts: (a) Angle to Edge; (b) An-
gle to Angle; (c) Edge to Edge
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FIG. 5. Experimental Setup

velocity from the previous step. The process of step-by-step
calculations assumes each step begins with the deformed block
shapes and positions of the previous step. The equilibrium
equations are solved for updated geometry and updated initial
conditions, i.e., velocities, stresses, etc. Large displacements
and deformations of the blocks are obtained by the accumu-
lation of small displacements and deformations in each time
step. This is the reason why DDA is characterized as the step-
by-step linear kinematics, and is in the true spirit of Calculus
developed by Newton. As the blocks move or deform, the
updating block shapes and positions will produce different
block contacts and the corresponding interactive forces. Thus,

TABLE 1. List of Basic Stereological Symbols and Their Defi-
nition

Symbol | Dimensions Definition
(1 (2 (3)

P pm™! Number of point elements, or test points

P, Number of intersections of cracks in a section with a
superimposed systemn of equally spaced test array
of straight parallel lines per unit of line length

P(8) wm™' Number of crack intersections in a section with a
system of equally spaced test array of straight par-
allel lines positioned in such a way that it succes-
sively encloses an angle 8, 8 = /2, and 8 = 0,
respectively, with the axis of symmetry

L pm Length of lineal elements or test-line length

L, wm/um?®  |Total crack length in a section per unit of area

S m Surface or interface area (not necessarily planar)

Sy pm?/pm’®  {Total crack surface area per unit of volume (S/V;)

= i ¢ o

FIG. 6. Vertical Cross Section of Marble Specimen

the whole block system changes, affecting modes of failure
more profoundly than those in continuum mechanics.

In DDA, the complete first-order polynomial function is
chosen as the displacement function of a block. Shi (1988)
transformed these six variables into another six variables with
physical meanings

(uo Yo L4 sx ey ’ny)

where (u,, vo) = rigid body translation of a specific point, (x,,
Yo), within the block; r, = rotation angle of the block with the
rotation center at (xo, yo); and €,, €,, Y., = normal and shear
strains of this block. Because an infinitesimal displacement
theory is adopted, the displacement function of a given block
can be represented by the coordinate dependent linear function
written as

ul _ |10 =(y—y) (x—x0) 0 (& = yo2 To
v/ 0 1 (x—xo) 0 (= y) &= x)2 &

8);

Combination of DDA with Finite-Element Mesh

The main purpose of placing a finite-element mesh in each
block is to improve its deformation ability. Although in DDA
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FIG. 7. Cracking in: (a) Center; (b) Extremity of Specimen

the geometry of the block can be convex or concave (even
with holes in it), the stress and strain in each block is constant,
not a realistic assumption for a big block. Thus, the addition
of a finite-element discretization in each block eliminates this
shortcoming. Not only will the movements of the block system
be depicted by DDA, but also the stress distributions within
the blocks will be obtained.

If the finite-element mesh of constant strain elements is cho-
sen, the complete first-order polynomial displacement function
is used to describe the triangular element’s behavior. There are
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six nodal displacements to be chosen as unknown variables.
These are

w v w vy uy vl

The functions of the geometry of the blocks is used as the
contact boundaries for the purpose of block kinematics in the
block system. Thus, the shape of the block need not be tri-
angular. By adding a finite-element mesh in each block, more
nodes are distributed along the contact boundaries of the
block, and the contact detection from block system kinematics
become more complicated in a discontinuous system.

Consider a three-node element where the boundaries are
drawn along the nodes in certain directions, forming a three-
edge block with the same size as the element. This configu-
ration is called a three-node ‘‘element block’*—a block with
nodal displacements as unknowns. If a three-node element is
extended to an n-node element mesh, an element-mesh block
with n nodes is obtained. In general, a block can be as small
as an element or as large as an element mesh. Different meshes
can also be put into different blocks if conditions permit.

The computer program dictates that the meshes of the ele-
ments and the boundaries of the blocks be input separately.
Then, element meshes and blocks are merged with the same
nodal numbers between the elements, but with different nodal
numbers between the boundaries of the blocks. The basic el-
ement in this numerical model is a triangular element. For the
convenience of putting the mesh in each block, four-node el-
ement meshes are first generated in the mesh program. Then,
a condensed five-node element—a quadrilateral element with
four nodes on its vertices and one additional node inside it
that forms four triangular elements—is used for forward
model computations.

Based on the idea of element-mesh blocks, the mesh in FEM
is just one block in DDA. By adding the finite-element mesh
into each block, it is possible to take advantage of the contin-
uous properties in FEM and discontinuous characteristics of
DDA, thereby simulating engineering problems more accu-

H v | i‘
i Qo
Langl® %l % ]
AR 0
I
-
L8 CLaud

s VR e g

FIG. 8. Backscattered Image of Center of Specimen (White Ar-
eas Are Cracks Filled by Wood's Metal)
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FIG. 9. (a) Backscattered Image of Extensile Cracks (White)
Generated by Point Loads; (b) Detail from Fig. 9(a) Showing Ex-
tensile Cracks in Marble Crystal

rately. Details of these derivations can be found in Shyu
(1993).

Simultaneous Equilibrium Equations

The simultaneous equilibrium equations derived by mini-
mizing the total potential energy, I1, have the following form:

[Kn] [Ki2] [Kla] [Kln] {Dl} {Fl}
[Kx] [Kn]l [Kz»] - [Kzn] (Dz} {Fz}

[K:.n] [Kaz] [Kas] [K_zu] {Ds} = {Fﬁ} )

[kull {K:nl] [[é,,g] o .' [krm} {Dn} {Frz}

As in the FEM, the nodal displacements are chosen as un-
known variables and each has two degree of freedom for the
two-dimensional case. For the given ith node, [K;]isa2 X 2
submatrix representing the stiffness of displacement at the ith
node with respect to the load acting on the jth node. {D,} and

{F;} are 2 X 1 submatrices for the corresponding unknown
nodal displacement and nodal loading matrices.

Inertia Matrix

Because the inertia force plays a key role in rigid body
motion, it is crucial to include it in dealing with the motions
of a discontinuous block system. Assuming the acceleration in
each time step is constant, the 2 X 2 nodal stiffness matrices
and 2 X 1 force matrices of element { can be described as

2M
Kiniw] = ? l:f f [T.'(r)]T[Tf(s)] dx d)’] r,s=1,23 (3)
A

2M
[Fin] = T [ f f [Ti(r)]T[Ti(.r)] dx d)’:l

r=1,2,3

§ = tensor sum @

“{Vis(0}} {
where

_ E u,»(s;(o)
{Vip(O)} = at (vi(s)(0)>

M = mass per unit area; and A = time interval of current time
step. The analytical solutions (3) and (4) can be obtained
(Chang 1994).

Normal Contact Matrix

When two bodies are detected to be in contact, the require-
ment of no penetration must be satisfied according to DDA’s
block kinematics. The contact problem reduces to the rela-
tionship of the angle-to-edge (point-to-line) case. When inter-
penetration pushes the point through the reference line, the
distance between them should be zero after the installation of
spring with stiffness p at the contact position. The nodal stiff-
ness and force matrices of element i and j are described as

[Ki(r)f(:)] = p{Hr}{Hs}r r,s= 19 2, 3 (Sa)
Koyl = P{Hr}{G:}T r,s=1273 (5b)
Kiniwl = p{G.HH,} rs=1,23 (5¢)
[Kﬂf)j(s)] =p{Gr}{GJ}T rns= 17 27 3 (Sd)
{Fin} = —p (%) {H} rns=1,2,3 {6a)
Sy
{F](f)} =-p (z) {Gr} rs= l’ 2v 3 (6b)
where
i1 =i =i
for element i $i(2) =i, forelementj§ j(2)=J,
i3 =4 iGy=J

The detailed derivation of internal stress, external loading, dis-
placement constraint, and contact matrices are described in
Shyu (1993).

Nonlinear Material Behavior

In structural mechanics literature, a problem is calied non-
linear if the stiffness matrix or the load vector depends on the
displacements. This nonlinearity can be classified as (1) ma-
terial nonlinearity, which is associated with changes in mate-
rial properties, as in plasticity; and (2) geometric nonlinearity,
which is associated with changes in configuration, as in large
displacements or deformations of the structures. Geometric
nonlinearity is modeled in DDA using a discrete time system.
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FIG. 10. Typical Backscattered Images Used to Establish Stereological Parameters

T

FIG. 11. Secondary Electron Image of Etched Sample Show- FIG. 12. Secondary Electron image of Etched Sample Show-
ing Grain Boundary Microcracks ing Grain Boundary and Extensile Microcracks
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FIG. 13. Number of Crack Intercepts in Function of Line Array Angles

The present work develops material nonlinearity formulation
and implementation for input into DDA.

DDA uses a step-by-step approach. Each step starts with the
deformed shape and positions from the previous step; the
stresses from the previous step are considered as the initial
stresses at the current step. After adopting the updated ge-
ometry, contact positions, velocities, and stresses from the
previous time step, the computation for the current step is in-
dependent from the data of the previous step. All the deform-
ability constants, loading, initial stresses, and boundary con-
ditions can be changed at the current step. Because the time
interval of each time step is very small, the displacement, de-
formations, and changes of stresses are very small, so that the
tangent modulus of the stress-strain relationship at the current
step is very close to the secant modulus of the stress-strain
curve. Thus, the arc-length method (Fig. 3) can be used to
calculate the piecewise linear modulus based on the updated
values of stresses and strains for the nonlinear constitutive be-
havior of materials. The preclusion of the volumetric strain is
neglected in plasticity for the present model.

The use of line segments to depict the nonlinear behavior
of the material is another way to show that the linear step-by-
step approach can solve both material and geometric non-
linearity problems. Trying to solve nonlinear material prob-
lems using only one step may violate the infinitesimal
displacement theory. When finite-element meshes and blocks
are combined together to obtain the stress distributions, or to
improve the deformation ability of the block, the use of a
piecewise linear stress-strain curve to solve material nonli-
nearity step by step allows solutions of complex engineering
problems.

The present work develops equations for nonlinear isotropic

materials using principal strain as the criterion for the change
of Young’s modulus E and Poisson’s ratio, v. The more the
line segments chosen follow the stress-strain curve, the better
the approximation of nonlinear inelastic material behavior for
each time step. Without the incorporation of fracture criterion,
the element meshed block of the system always remains as an
intact material in the present model. The material is assumed
to be strain hardening after yielding, because the strain-soft-
ening behavior observed in the experimental stress-strain curve
reflects the global specimen instead of the individual blocks.
The true stress-strain curve is used in the model, plus the
Bauschinger effect is considered in cyclic loading. The un-
loading and reloading paths after yielding are assumed to be
the same in the stress-strain curve, as shown in Fig. 4.

EXPERIMENTAL METHODS

An apparatus similar to the one used by Nemati (1994) was
used for this experiment. To preserve the microstructure in
marble specimens under load, the voids and fractures were
filled with Wood’s metal during loading, and the alloy was
solidified in place before unloading. The composition of the
Wood's metal was: 42.5% Bi, 37.7% Pb, 11.3% Sn, and 8.5%
Cd, and it had a melting point of approximately 80°C. A cy-
lindrical core was cut and the ends were ground parallel to
one another at the required length. After this stage, the spec-
imen was ready for uniaxial compression test assembly. The
vessel containing the molten metal and the specimen was as-
sembled with loading and measuring apparatus. The linear var-
iable displacement transducers (LVDTs) for the axial displace-
ment measurements were attached to a steel end piece, and
the LVDT for the radial displacement measurement was at-
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tached to a split steel ring. Fig. 5 shows a schematic setup for
the testing.

The internal temperature was established and maintained at
96°C (205°F) during the test, and a vacuum was applied to the
vessel and kept constant for at least 30 min. The vacuum re-
moved any air that had become trapped in the marble cylinder
when it was assembled inside the vessel. An axial stress of
90% of the ultimate strength was applied to the marble cyl-
inder, at which point the vacuum was removed. Finally, the
induced microcracks were saturated with the molten metal
with a pore pressure of 10.3 MPa (1,500 psi). The pressure
was kept constant throughout the test and did not alter the
effective stresses on the marble cylinder. With a surface ten-
sion of 400 N/m, the alloy could penetrate into flat cracks with
apertures as fine as 0.08 pm. The axial strain of interest was
kept constant for 10 min to allow the liquid to penetrate into
pores and fractures fully before the vessel was rapidly cooled
down to room temperature. The marble test specimen was then
sectioned along its axis and across its diameter, and then
ground and polished for microscopic examination and photog-
raphy.

Stereology of Marble Samples

All matter can be described in terms of zero, one, two, and
three dimensions. Stereology deals with the interpretation of
three-dimensional structures by means of their two-dimen-
sional sections. Stereology is the opposite of photogrammetry,
which utilizes three-dimensional images in order to construct
flat maps. Techniques conventionally used for studying the
three-dimensional structure of materials, particularly in other
material sciences, are often stereological ones.

If a sectioning plane cuts a three-dimensional aggregate of
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space-filling polyhedrons, a two-dimensional structure that
consists of area-filling polygons can be observed. The task
then is to relate the observations made on a section to the true
three-dimensional microstructure. Stereology attempts to nu-
merically characterize the geometrical aspects of those features
of the microstructure of interest; for example, the microcracks
in concrete represented by Wood’s metal. In its broadest con-
text, stereology includes not only the quantitative study and
characterization of any spatial structure, but also its qualitative
interpretation.

There are various approaches to stereological problems. The
statistico-geometrical approach depends on measuring and
classifying a large number of two-dimensional images; this is
the method used in this study. It is applicable when objects
are randomly distributed in space. In such cases, a single sec-
tion, if extensive enough to contain a statistically significant
number of features, may suffice to obtain valid results. This
study considers the numerical or quantitative characterization
of points, lines, surfaces, and volumes. Fundamental expres-
sions were determined that relate measurements on two-di-
mensional sections to the three-dimensional structure. Table 1
presents some of the basic symbols commonly used in the
measurements employing quantitative stereology.

In this research, the stereological parameters of P;, L,, and
Sy will be used to perform the stereological analysis. The re-
lationships between L, and Sy with P, is presented as follows
(Underwood 1968):

Surface-to-volume ratio, Sy
Sy = 2P, pm*/pm’ @

Length of line per unit area, L,
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™ ; the number of intersections was plotted versus 0, creating the
L= 2 P, pm/pm ®) ‘‘compass rose’’ pattern diagram.,
The rose diagram characterizes the degree of orientation of
or the cracks, making it easier to interpret the data. The rose
diagrams were plotted to cover only the range of 0°-165°
7 ™ (cracks at 0° and 180° have equal lengths) since the range from
sPi=Li=7 Sy ® 180° to 360° is redundant.

Applying the method of random secants on a plane to an
image of a crack pattern, (9) presents simple algebraic rela-
tionships to calculate the total crack length per unit area or the
specific surface area (of the cracks) per unit volume. The de-
pendence of the number of intersections per unit length with
the angle of the test array can be used to characterize the
degree and types of orientation of a system of lines in a plane.
Saltikov (1945) proposes a polar plot of P, with respect to the
orientation axis (axes), and calls the resulting curve the rose
of the number of intersections, or simply the rose.

The rose for an oriented system of lines can be easily ob-
tained experimentally. We apply a test array to the system of
lines at (equal) angular increments with respect to the orien-
tation axis, and determine P, separately at each angle. Then
we draw radius vectors on a polar graph paper, plotting P,
versus 6. We connect the ends of the radius vectors by a
smooth curve, giving the rose. In case of isometry, the rose
will be a circle with its center at the origin of the polar figure.
If a preference direction should occur in a crack pattern, the
shape of the rose will change.

The stress-induced microcrack system in marble is consid-
ered to be partially oriented, as opposed to a completely ori-
ented (idealized) system. Test arrays of equal angular incre-
ments were applied to each binary image, and the number of
intersections was determined separately at each angle 6. Then

Many researchers have successfully applied the concept of
stereology to study micromechanical aspects of engineering
materials. With the advent of modern image analysis systems,
it is now possible to perform stereological analysis on a great
number of images accurately and expeditiously, whereas in the
past this was not achievable by manual methods.

EXPERIMENTAL RESULTS

Fig. 6 shows the vertical cross section of a marble specimen
that has been loaded up to failure. The dark zones indicate
where the metal has penetrated the crack induced by the me-
chanical load. There is strain localization at the center of the
specimen and development of four major lines of shear failure
starting at the edges of the specimen. This image will be used
as a starting point for the modeling developed in the following
section. Fig. 7(a) shows an optical image of the center of the
specimen where intense cracking localization developed. Due
to the three-dimensional confinement caused by end effects,
the amount of damage is not as intense at the extremities of
the sample, as indicated by Fig. 7(b).

A large number of intragranular cracks were observed, as
shown in Figs. 8 and 9. Similar cracks were noted by Zheng
(1989) in his comprehensive work on limestone microcrack-
ing, by Baztle et al. (1980), and Dey and Wang (1981). Many
of the intragranular cracks were generated as a result of point
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loading. As observed by Zheng, grain boundary microcracks
can often develop into intragranular cracks, or remain inter-
granular cracks, particularly if the grain boundary is parallel
to the maximum compression direction. When grains are
loaded across their diameter, microcracks develop inside the
grains caused by the tensile stresses generated in a condition
similar to a Brazilian splitting test. Fig. 9(a) shows such mi-
crocracks aligned along the loading points.

The quantitative analysis was performed in polished sam-
ples of marble, using backscattered electron imaging. Fig. 10
shows a typical image using such a technique. A few samples
were exposed to mild acid so the marble would leach away,
leaving the three-dimensional framework formed by the cracks
filled with Wood’s metal. Under a secondary electron micro-
scope these samples indicate the complexity of the system of
cracks induced by the stress. Figs. 11 and 12 show the three-
dimensional crack network. These images, even though useful
for visualization, are not quantitative, so most of the research
effort concentrated on the analysis of backscattered images.

Fifty-six backscattered images went through computer ma-
nipulations to establish the statistical parameters. For each pa-
rameter, an average, standard deviation, standard error, and
ratio of standard error over average were calculated. Standard
error was calculated as follows:

standard error = . A—
V' Number of Im

The ratio of standard error over the average of 5% is consid-
ered to be a good result. The microcrack density distribution
represents the number of microcracks per unit of observation
area. Pore spaces are not counted as microcracks. Fig. 13
shows the number of crack intercepts as a function of line

10)
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array angles. Together they represent the open version of the
rose diagram. There is a strong indication that the microcracks
are subparallel to the direction of the maximum compression.
From a fracture mechanics point of view, the stress intensity
factors form the opening microcracks in the direction of the
maximum compressive stress.

COMPRESSIVE POSTFAILURE ANALYSES OF
MARBLE SPECIMEN

This simulation analyzes the compressive postfailure behav-
ior of a marble specimen with preexisting cracks. The main
cracks observed experimentally (see Fig. 6) were used as the
original configuration of the element block system (Fig. 14).
The marble specimen is 3.65 cm long, 2.54 cm wide, and the
mesh contains 28 elements and eight blocks. The upper and
lower rectangular blocks are simulated as the loading and base
frames. The simulation is done under displacement control.
The loading rate is 0.013 cm/s. The effect of lateral confine-
ment on the specimen is also investigated. The following pa-
rameters were used:

Case: plane strain dynamics

Stiffness of the contact spring (penalty): 1.46 X 10° kN/m
Time interval: 0.001 s

Unit mass: 2,713 kg/m®

Gravity: 9.81 m/s?

Friction angle: 35°

Initial stress (o, 0y, T5): (0, 0, 0) MPa

Yielding strain (g, €. for the marble specimen: (0.001,
—0.001)

Range of g, for (E;, v,) of the marble specimen in com-
pression: E is in MPa
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For loading
Range 1: —0.001 < & =< 0.000, (E,, v;) = (5.14 X 10°%
0.17)
Range 2: —0.900 < &£ =< —0.001, (E,, v;) = (2.07 X 104,
0.17)

For unloading
Range (1): —0.900 < £ = 0.000, (E,, v,) = (5.14 X 10°,
0.17)
E,, v, of the loading and base blocks (elastic material):
2.07 X 10° MPa, 0.3

Seven thousand time steps (~2.398 s) were used in the
computation. Fig. 15 shows the results after steps 200, 400,
1,000, 4,000, and 7,000. Figs. 15(a—e) indicate the propaga-
tion of plastic regions. Round tint marks represent the area
where the material reached the inelastic range and stayed in
the continuous loading track, while the round dark marks in-
dicate the area that also was reached in plastic range, but lay
in unloading track. The simulation was able to capture the
failure mode and the progressive dilation of the marble sam-
ple, as observed experimentally in Fig. 6. Fig. 16 shows the
deformed and undeformed shapes of the sample, and Fig. 17
presents the principal stresses and directions after the final
step, with dashed lines representing tension and solid lines
representing compression.

CONCLUSIONS

The Wood’s metal technique allowed the study of micro-
cracks in marble under compressive loads. The advantage of
such an alloy is that it can be injected into voids and stress-
induced microcracks at the desired stress level, then solidified
at any stage of the experiment to preserve, in three-dimen-
sional form, the geometry of the microcracks induced at any

given stage of the experiment. Microscopy study showed that
most of the microcracks were extensible, and stereology anal-
ysis revealed that the microcracks have a tendency to grow
subparallel to the direction of maximum compression.

By incorporating finite-element mesh and nonlinear material
behavior into each block, an enhanced version of discontinu-
ous deformation analysis can be applied to investigate the
global stability of the discontinuous system, in addition to clar-
ifying the stress distribution and plastic region propagation in
the element block system of the marble specimen. This dis-
continuous approach provides another way to understand the
postfailure effect and global stability of the structural system.
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