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A b s t r a c t  

Two different investigations on the scaling properties of damage in concrete have been carried out. In the case of uniaxial 
tensile tests, a laser profilometer was adopted to scan the post-mortem fracture surfaces. In the case of compression tests, a 
fusible alloy (Wood's metal) was injected inside the specimen under load (ante-mortem). Afterwards, scanning electron 
microscope was used on the sliced specimens to detect the stress-induced crack patterns. The highly localized energy 
dissipation in uniaxial tension evolves from a narrow damage band to a fracture surface with fractal dimension comprised 
between 2.0 and 2.5. The microcracks networks induced by compression present fractal dimension even larger than 2.5 in 
the bulk. Fractality permits to explain some aspects of the fracture behavior, like the stable crack growth encountered in the 
tests and the smoothing of the dynamic stress-intensity factor which causes the cracks to propagate slower than at the 
theoretical Raleigh speed. © 1997 Elsevier Science Ltd. 
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1. I n t r o d u c t i o n  

1.1. Tens i le  f a i l u r e  in concre te  

Concrete is a heterogeneous material that exhibits 
strain-softening behavior and fails progressively by 
damage-localizat ion and breakdown of  its compo- 
nents. Moreover,  it is characterized by considerable 
size-effects and by a marked difficulty in the repro- 
ducibility of  the te, sts. Brittle fracture in concrete 
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structures represents a typical example of  cusp catas- 
trophe (Carpinteri, 1989). According to this concept, 
the system of dissipative processes (microcracking, 
creep, plasticity) can transfer to a thermodynamic 
equilibrium state only by a jump, as a result of a 
critical phase transition at a bifurcation point. If  a 
tensile load is increased beyond the peak (load-con- 
trolled process), the complete fracture of the speci- 
men occurs. If  a displacement-controlled process is 
carried out, the softening regime comes into play, 
which is clearly unstable in the sense of Drucker. 
The continuum mechanics approach fails to predict 
these aspects, and also linear elastic fracture mechan- 
ics (LEFM) is inadequate because of the scale of 
heterogeneities. 
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Fig. 1. Cohesive crack model (Hillerborg et al., 1976). 

and LEFM can be neglected. On the other hand, the 
physical meaning of ~'F is ambiguous. ~'F is consid- 
ered to be dissipated on the nominal (smooth) area of 
the final separation surface and therefore is defined 
as surface energy ( [F] [L]- I ) .  On the contrary, it 
refers to a much more complex process of dissipa- 
tion, occurring in a higher dimensional fractal do- 
main (Carpinteri and Chiaia, 1995a), where several 
micromechanisms of damage take place and interact 
at various scales. 

Since the pioneering works of Griffith, energy- 
based failure criteria PrOved to be more appropriate 
than stress criteria to describe tensile failure of brittle 
materials. Afterwards, LEFM has been extrapolated 
and nonlinear models have been introduced to ex- 
plain peculiar phenomena occurring in the presence 
of meso-level heterogeneities. The constitutive model 
that best describes the tensile behavior of concrete is 
the Cohesive Crack Model by Hillerborg et al. (1976), 
which is based on two different relationships. The 
first one (Fig. la) is the elastic-plastic stress-strain 
law, holding up to the ultimate tensile stress o" u, and 
the second one (Fig. lb) is a stress-crack opening 
displacement law, also called the cohesive law, 
which describes the softening behavior provided by 
the damaged process zone. 

The area under the cohesive law o-(w) represents 
the energy dissipated on the unitary crack surface 
and, by definition, is called the fracture energy ~F 
of the material. The cohesive law is assumed as a 
material characteristic, since it intimately depends on 
the microstructure and on the dissipation mecha- 
nisms involved in the fracture process (bridging, 
creep, aggregate interlocking). Therefore, the frac- 
ture energy ~'F is usually assumed as a material 
constant. 

According to its definition, the fracture energy ~'V 
does not represent a local toughness parameter, like 
the critical stress-intensity factor KIC (tensile frac- 
ture toughness). It rather represents a mean-field 
quantity, involving the whole complexity of micro- 
scopical phenomena ahead of the crack tip, which 
contribute to the total work-of-fracture (energy frac- 
ture toughness). The great advantage of such a global 
parameter is provided by the absence of linearity 
requirements in the fracture process. No information 
on the singular stress field at the crack tip is needed, 

1.2. Compressive failure in concrete 

The composite nature of concrete represents the 
major difficulty in developing a fracture criterion for 
concrete in compression. It is nowadays clear that a 
sound explanation of the behaviors observed in the 
laboratory and in real-sized structures can be ob- 
tained only if the complex microcracking phe- 
nomenon is taken into account (Vonk, 1993). Similar 
crack patterns in similar uniaxial compressive tests 
have been detected, at different scales, in different 
materials like glass, concrete, rocks and masonry. 
The similarity in the cracking behavior of different 
brittle materials emphasizes common fundamental 
fracture mechanisms. 

The dominant mechanism of brittle fracture in 
compression is basically Mode I cracking, the same 
as in tension. Nemat-Nasser and Hori (1993) suc- 
cessfully explained how, even under all-around com- 
pressive loads, brittle materials tend to fail by the 
formation of tensile microcracks at microdefects such 
as cavities, inclusions and grain interfaces. Tensile 
stresses break interatomic bonds and pour the sur- 
faces apart. Nevertheless, a completely different be- 
havior is provided by the overall tensile strains, 
which are parallel to the load direction in the case of 
tensile tests, and mainly perpendicular to the load 
direction in the case of uniaxial or biaxial compres- 
sion tests. Whilst, in the former case, the overall 
tensile strains are limited (to about 10 - 4 )  because 
microcrack propagation is highly unstable, in the 
latter case the overall tensile strains can be ten times 
greater. 

However, this does not totally exclude Mode II or 
Mode III cracking, or their combination, but it is 
believed that these Modes come into play in the last 
stages of the failure process, whilst in the pre-peak 
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regime they may occur only at a local scale as 
second-order effects. Macroscopic failure modes fre- 
quently observed in compression tests, such as coni- 
cal, pyramidal or weclge-shaped modes, are mainly 
due to the boundary confinement of the loading 
platens. Under the usual testing conditions, the stress 
field in the specimen is highly anisotropic and not 
uniaxial at all. The so-called shear failure is nowa- 
days considered a secondary (macro) effect which 
occurs after the axizl splitting has begun. Shear 
bands and shear displacements are not fundamental 
mechanisms of failure, but only the consequence of 
boundary restraint. 

In uniaxial compressive tests, macroscopic cracks 
essentially start para]lel to the direction of axial 
loading. Experimental as well as theoretical explana- 
tions for this behavior in heterogeneous materials 
are nowadays well established (Nemat-Nasser and 
Hori, 1993). Instead, convincing theoretical explana- 
tions are lacking for the propagation of a parallel 
crack during a uniaxial test in a homogeneous mate- 
rial. Stress-based criteria would request the presence 
of tensile stresses. Further, energy-based criteria fail 
if no source of energy release is present, as it is the 
case of a hairline crack parallel to the direction of 
load, which apparently alters neither the strain en- 
ergy nor the total potential energy. The only reliable 
explanation for this behavior is provided by the 
intrinsic heterogeneity of the material, and especially 
by the presence of cracks, pores and voids even prior 
to the application of tile load. Griffith postulated that 
brittle materials contain randomly oriented flaws 
which significantly a]iter stress-strain fields in the 
bulk. As well as pre-existing flaws act as stress- 
raisers in tensile tests, they can be considered tensile 
stress producers in compression. Indeed, the pres- 
ence of voids in concrete strongly reduces its strength. 
That is, 5% of voids can lower compressive strength 
by as much as 30% compared to the same mixture 
when fully compacted. 

Any constitutive or geometrical heterogeneity al- 
ters the stress-strain field, and thus may promote 
crack initiation. On Lhe other hand, heterogeneity 
may also stop or slow down crack propagation. This 
duality represents an awkward aspect to be modelled. 
It can be concluded that the interplay between the 
tensile stress-inducing capacity and the crack-arrest- 
ing capacity of the micro-heterogeneities is the key 

for a better understanding of brittle failure in com- 
pression. 

2. Fractal models of  heterogeneous microstruc- 
tures 

The characteristic features of critical phenomena, 
such as hierarchy of interacting defects, stochasticity 
and far-from equilibrium instabilities, are present in 
both tensile and compressive failure modes. The 
irregularity of the crack trajectories is a well docu- 
mented and discussed phenomenon. The two poten- 
tial sources of disordered damage patterns are the 
intrinsic instability of the cracking process and the 
effect of the (random) pre-existing material inhomo- 
geneities. An extensive documentation exists on the 
stability of crack trajectories to small perturbations 
and it is nowadays widely demonstrated that the 
quenched disorder of brittle fracture patterns cannot 
be ascribed to crack-tip instabilities. It can be con- 
cluded that the main source o f  randomness and 
chaotic behavior is the inherent disorder o f  the 
material microstructure. Whenever entropy wins 
over energy, the resulting structure will be domi- 
nated more by randomness than by strict Euclidean 
order and we might expect to find fractal patterns 
with self-similar scaling symmetry (Mandelbrot, 
1982). 

The application of Fractal Geometry to cementi- 
tious materials is relatively recent in comparison 
with the application to rocks and metals, but has 
proven to be very appropriate, due to the multi-scale 
heterogeneity of these materials (Carpinteri, 1994). 
This is reflected into the hierarchical process o f  
failure. The interfacial zone between cement paste 
and aggregates is one of the weakest areas of the 
concrete microstructure. Cracks usually originate 
from pre-existing flaws (pores) in the matrix and at 
the interfaces (micro-level). Afterwards, they de- 
velop at the scale of the matrix (meso-level), and 
finally extend to the structural scale (macro-level), 
resulting in a typically disordered pattern with multi- 
ple cracking randomly diffused at the interfaces, 
through the matrix and through the aggregates. It can 
be noticed that this propagation process leads to 
more organized patterns at larger scales. 

The main aspect to be highlighted, next to the 
phenomenological evidence, is the physical signifi- 
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cance of fractality. In the framework of critical 
phenomena a deep connection has been established 
between Physics and Topology. All the physical 
systems undergoing catastrophic transformations, like 
phase transitions, earthquakes and brittle fracture, 
show at the critical point fluctuations that are self- 
similar at all length scales, thus resulting in the 
(theoretical) absence of any internal characteristic 
length (or, which is the same, in the infinite correla- 
tion length of the phenomenon). 

In the case of fracture patterns, invasive fractals 
(i.e., fractal sets with dimension A strictly larger 
than their euclidean projection) represent adequate 
models of their topology. The random yon Koch 
curve (Fig. 2a) can be considered the archetype of 
the fracture trajectories obtained as intersections of 
tension-generated fracture surfaces with orthogonal 
planes. The Peano curve (Fig. 2b) represents the 
limiting invasive fractal in the plane (fractal dimen- 
sion A = 2), because establishes a continuous corre- 
spondence between the straight line and the plane. 
The space-filling ability of these sets provides posi- 
tive scaling exponents for the mechanical quantities 
(e.g., the fracture energy) defined over them 
(Carpinteri, 1994). 

All the fractal sets in Nature show random self- 
similar morphologies, in the sense that their aspect 

looks statistically (and not exactly, as in the case of 
mathematical fractals) the same under the changes in 
the scale of observation. Besides randomness, two 
more aspects have to be enlightened that are peculiar 
for all the natural fractal structures. First of all, the 
presence of an upper and a lower bound in the 
scaling range and, consequently, the inevitable tran- 
sition occurring from the fractal (disordered) regime 
at the microscopic level towards an euclidean (ho- 
mogeneous) regime at the largest scales. The upper 
bound is represented by the macroscopic size of the 
set, whilst the lower one is related to the size of the 
smallest measurable particles, these being the grains, 
in the case of metals, the crystals, in the case of 
rocks, and the aggregates, in the case of concrete. It 
can be argued that the presence of this internal 
length, typical of each microstructure, inhibits the 
development of a perfect self-similar scaling through 
the whole scale range, whereas mathematical fractals 
(Fig. 2), lacking any characteristic length, exhibit 
uniform (monofractal) scaling without any bound 
and can be characterized by a unique value of the 
self-similarity dimension. 

Mandelbrot (1985) pointed out the transition from 
a fractal regime, characterized by the so-called local 
fractal dimension, to the homogeneous one, charac- 
terized by the classical (integer) topological dimen- 

N= l 

N=2 

(a) 

J N=I 

N=3 

(b) 

Fig. 2. Invasive fractals: random von Koch curve (a) and Peano curve (b). 
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sions. Such non uniform scaling can be defined as 
'self-affinity'. One step forward is geometrical mul- 
tifractality (Carpinteri and Chiaia, 1995a). The two 
regimes are considered only the asymptotics of a 
continuous topological transition. Therefore, an in- 
finity of exponents is necessary to describe the entire 
range of the scaling. Multifractal patterns prevail in 
Nature whenever the interplay between two length 
scales occurs. 

3. Experimental inw:stigation on the fractality of 
tensile fracture surfvLces 

3,1. Experimental set-up 

Bone-shaped concrete specimens have been tested 
in uniaxial tension and the resulting fracture surfaces 
have been subsequemly analyzed. A laser displace- 
ment sensor (3 mW semiconductor, class IIIb) has 
been used to scan the surfaces along parallel profiles. 
The wavelength of 1Lhe laser beam was 780 nm, 
allowing for an accuracy of + 2 ~m.  This yields a 
significant improvement with respect to previous 
investigations (Carpinteri and Chiaia, 1995a) and 
represents, for our purposes, the optimal resolution 
in the case of cement-based materials. For an optimal 
measurement set-up, the sensitivity of the laser was 
adjusted to fit the optical properties of the concrete 
surface (color, light absorption and reflection, and so 
on). 

The laser sensor was mounted on an advanced 
motion controller system, at a distance of approxi- 
mately 25 mm from the concrete surface (Fig. 3). 

The mechanical system shifts the sensor along two 
perpendicular directions (x  and y coordinates), usu- 
ally parallel to the main sides of the cross section, 
with horizontal steps equal to 0.01 mm. After each 
step, the guide stops and the profile elevation (z 
coordinate) is detected by the sensor and stored in 
the computer along with the horizontal coordinates. 
Due to inertial forces, a + 1 /~m error is present in 
the determination of the horizontal coordinates. 

In principle, given the coordinates of a limited 
area on the surface, the procedure is fully automa- 
tized, and a 3D topography of the fracture surface is 
obtained. On the other hand, a 10 × 10 cm 2 area 
(which is the minimum representative area for a 
normal concrete) consists of about 100 million digi- 
tized points, that is, 300 million stored coordinates. 
This results in an enormous computational effort 
when the fractal dimension has to be measured on 
standard computers. Thus it was decided, in a first 
stage, to analyze single profiles (2D topography). Six 
profiles have been digitized on each specimen, three 
along each perpendicular direction, in order to aver- 
age out the effects of highly correlated directions of 
propagation. 

3.2. Determination of the fractal dimension of frac- 
ture profiles 

Deterministic and stochastic methods can be ex- 
ploited for the measurement of the fractal dimension 
of fracture patterns. In principle, they are all equiva- 
lent in the limit of the smallest scales, but they differ 
significantly when applied to digitized profiles. Most 
of the methods (e.g., the Divider method and the 

data 
acq aisition 

laser sensor 

zoncrete specimen 

Fig. 3. Laser-digitization of fracture profiles: scheme of the experimental set-up. 
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Spectral method) are tailored to the case of one 
variable function graphs. Moreover, the Spectral 
method is rigorously demonstrated only in the case 
of self-affine scaling. Thus, it was decided to adopt 
the 2D box-counting method which, on the contrary, 
applies to any (invasive or lacunar) fractal domain 
referred to the 2D plane. Both the tensile fracture 
profiles and the compressive crack networks can be 
analyzed by this method. 

The box-counting method is based on the concept 
of the Minkowski-Bouligand dimension. The 
Minkowski-cover of a set is obtained by covering the 
considered domain by means of a collection of regu- 
lar euclidean figures, with dimension equal to the 
space in which the fractal is embedded. The fractal 
dimension is obtained by computing the logarithmic 
density of the measure of these coverings, as their 
linear size decreases. In principle, the concept of 
generalized cover allows one to adopt any kind of 
convex shapes to perform the covering. On the other 
hand, from a computational point of view, square or 
rectangular grids are always used. In order to study 
the complex patterns resulting from the experimental 
tests, a general-purpose version of the method has 
been developed. As the linear size e of the covering 
boxes decreases, their number N increases and their 
area E decreases (Fig. 4). The box-dimension A is 

(1) 

( log N(~i)  ) ( loglE(si)12 ) 
A =  lim = 2 -  lim . 

6~---,o log(1 /e i )  e~--,o log '¢i 

7.2 

In practical applications, instead of dealing with a 
limit, linear regression is carried out in the log N 

vs. log s plot or in the log E vs. log e plot. The 
slopes qo and O are respectively obtained and the 
Box-dimension is computed as A = - qo or as A = 2 
--tg.  Further details on the algorithm have been 
explained by Carpinteri and Chiaia (1995a). 

The fracture process under uniaxial tension is 
highly unstable. After an initial stage of randomly 
distributed microcracking (usually at the interface 
between aggregates and matrix) correlations between 
the cracks increase and a well-defined band is se- 
lected for the main dissipation. The interface microc- 
racks and the pre-existing pores become attractors of 
the macrocrack propagation. It has been demon- 
strated (Vervuurt et al., 1995) that these networks are 
self-similar. The fractal dimension of the networks 
can exceed 1.5 in the 2D projection. Complex inter- 
actions among microcracks occur at this stage. Self- 
organized dissipation increases ductility, macroscopi- 
cally providing the softening regime of the load-de- 
formation curve. 

When the final breaking of the specimen occurs 
(catastrophic transition), a single self-affine fracture 
surface is generated whose local dimension is 
bounded by 2.5 (Brownian surface). Therefore, in 
the case of fracture profiles, direction-dependent 
rescaling of the grid has to be performed, because of 
the self-affine character of the set. Instead of consid- 
ering only the local fractal dimension at microscales 
and the topological dimension at large scales, the 
entire scaling range is swept by the box-counting 
algorithm. Anisotropic grids are used, in order to 
enhance the statistical fluctuations in one direction. 
In this way, it is possible to detect the local fractal 
dimension in the limit of the smallest grids (Fig. 5). 

The multifractal character of the fracture profiles 
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Fig. 4. Appl ica t ion  o f  the b o x - c o u n t i n g m e t h o d t o  a d igi t ized concre te  profi le .  
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Fig. 5. Double-logarithmic plot from the box-counting method (a), and multifractal transition from Euclidean order to Brownian disorder 
(b). 

clearly emerges from the box-counting analysis. 
Multifractal scaling is provided, in fact, by the inter- 
play between the (mainly horizontal) crack advance- 
ment and the orthogonal direction. Not a unique 
slope can be traced in the double-log diagram (Fig. 
5a), but the fractal dimension zi progressively de- 
creases as the scale of observation increases. The 
densifying ability of the domain vanishes at coarse 
scales (macro-level), where a smooth euclidean pro- 
file is measured. On the contrary, as the grid size 

tends to zero (micro-level), the fractal dimension 
increases, ideally tending to 1.5 which is the local 
fractal dimension of a unidimensional Brownian mo- 
tion in the space vs. time domain (Fig. 5b). This 
trend, already captured by previous investigations 
(Carpinteri and Chiaia, 1995a), is even more pro- 
nounced due to the higher resolution in the data 
acquisition. Local dimensions A l ranging from 1.28 
to 1.42 were measured at the smallest scales, testify- 
ing the tendency to 1.5. Extrapolating from the pro- 
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Fig. 6. Profile elevations (a, b) and plot of the increments (c, d) for two profiles. 
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files to the surfaces, a limiting dimension equal to 
2.5 should be attained. 

It is worth pointing out that discreteness effects 
come into play when the grid size is close to the 
digitization step (i.e., 10 /zm). Therefore, data in the 
upper left side of the double-log diagram have to be 
neglected (Fig. 5a). This represents an unavoidable 
drawback of any experimental measure of fractality 
on real sets, regardless of the data-acquisition method 
and of the measurement algorithm. Discreteness ef- 
fects arise also in the case of SEM images of com- 
pression-induced crack networks, strongly affecting 
the image analysis procedure (Fig. 9f). 

Confirmation of the Brownian character of the 
fracture surfaces comes from the analysis of the 
elevations growth rate (derivative) of the profiles. In 
the ideal case of geometrical Brownian motion, the 
plot of the increments possesses Hausdorff dimen- 
sion equal to 2.0 and its power spectrum is abso- 
lutely flat (Mandelbrot, 1982). No correlation is 
present between two subsequent increments and 
self-similar scaling comes into play (Gaussian white 
noise), meaning that the system of the increments 
lacks any characteristic scale. 

The trail of the Brownian motion can be intended 
as the integral of a white noise and possesses fractal 
dimension equal to 1.5. Self-affine scaling is pro- 
vided in this case, and an internal length character- 
izes the graph. In fact, if we rescale the horizontal 
axis by a factor b and the vertical axis by a factor 
b 1/2, we reproduce the original distribution of the 
motion. Short-range correlations are present in the 
graph, as well as long-range ones. Indeed, short-range 
correlations prevail, meaning that the position of 
each point in the graph is dependent on the position 
of all the other points, but mainly on the position of 
the surrounding ones. Therefore, the power spectrum 
( S ( f ) = f  -2) steeply decreases as the spatial fre- 
quency increases. 

In the case of concrete fracture profiles, analysis 
of the growth rates (Fig. 6c, d) yields fractal dimen- 
sions ranging from 1.71 to 1.94. This confirms the 
hypothesis of Brownian disorder underlying the frac- 
ture phenomenon. This assumption, although not yet 
proved by experiments, is suggestively supported by 
Chudnowski and Kunin (1987), who demonstrated 
that Brownian surfaces arise as the result of the 
interplay of randomness and optimality. In the case 

of fracture, randomness is present in the distribution 
of material properties and therefore in the micro- 
cracks nucleation, whereas optimality is obviously 
related to the energy expenditure during formation of 
the fracture surface. 

Recent applications of these concepts to turbu- 
lence (El Naschie, 1996) lead also to affirm that a 
connection must exist between all the chaotic dissi- 
pative phenomena. Extrapolation of the results to 3D 
sets is straightforward, since 2D profiles can be 
considered intersections of the 3D surface with verti- 
cal planes. Indeed, 3D correlations cannot be re- 
vealed by the profile analysis. It can be concluded 
that the box-dimensions measured on 2D profiles 
represent a lower bound of fractality in concrete 
tensile fracture surfaces. 

4. Experimental investigation on the fractality of 
compression-induced damage patterns 

4.1. Experimental set-up and specimen preparation 

Wood's metal porosimetry techniques were pio- 
neeringly applied by N. Cook and his co-workers at 
the Berkeley Labs (Zheng et al., 1988). This non-de- 
structive technique allowed to investigate deeply in 
the micro-mechanisms involved in the whole me- 
chanical behavior of rocks under compression load- 
ing (Myer et al., 1992), giving experimental valida- 
tion to the theoretical models proposed by Nemat- 
Nasser and Hori (1993). The technique, essentially, 
makes it possible to preserve the compressive stress- 
induced microcracks in porous materials as they 
exist under applied loads. In this section, the applica- 
tion of this technique to concrete is illustrated 
(Nemati, 1994). The results of these experiments 
have been used to better understand and quantify the 
general relationship between stress level and crack 
development, as well as the effects of confinement 
on crack behavior. A special test equipment was 
created to preserve the cracks under applied load. 
This was accomplished by injecting a molten metal 
into the induced cracks and solidifying it before 
unloading. The experiments carried out involved 
three procedures, namely the concrete casting and 
preparation, the crack induction, and the molten 
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metal injection and solidification. The second and 
third procedures were carried out simultaneously. 

Normal-strength concrete cylinders, 203 mm long 
by 102 mm in diameter, were cast using a standard 
mix design at the Civil Engineering Materials Labo- 
ratory of the University of California at Berkeley. 
The compressive strength of the samples was ap- 
proximately 51.7 MPa. Wood's metal, whose com- 
mercial name is Cerrosafe TM, is a fusible alloy. In 
the liquid phase it is non-wetting, with an effective 
surface tension of about 400 m N / m .  It consists of 
42.5% bismuth (Bi), 37.7% lead (Pb), 11.3% tin 
(Sn), and 8.5% cadmium (Cd). It has a melting point 
range from 71.1°C to 87.8°C, and is solid at room 
temperature. Wood's metal has a Young's modulus 
of 9.7 GPa and a density of 9.4 g / c m  3. The advan- 
tage of such an alloy is that it can be injected into 
voids and stress-induced microcracks at the desired 
stress level, then so][idified during the experiment to 
preserve the geometry of the induced microcracks at 
any given stage of the experiment (Zheng et al., 
1988). 

The equipment used for this research was spe- 
cially designed and developed at the University of 
California at Berkeley. It consists of five pieces: 
pedestal, vessel, piston, top cap, and heater (for 
description and detailed design of the test equipment 
refer to Nemati, 1994). Two different loading condi- 
tions, uniaxial and triaxial, were used to induce 
cracks in the concrete cylinders. Triaxiality was pro- 
vided by the wire wound around the concrete cylin- 

ders. After preparation for testing, each concrete 
cylinder was first dried in an oven at a temperature 
of 43.3°C. This removed the moisture in the concrete 
and preheated the cylinder, ensuring that the molten 
metal alloy could penetrate into pores and cracks 
deep within its core without solidifying prematurely. 
The concrete cylinder was then placed on the pedestal 
inside the vessel and the piston was placed on top of 
it. A LVDT (linear variable displacement transducer) 
for the axial displacement measurement was attached 
to the loading frame. Wood's metal was poured into 
the vessel and once the concrete cylinder was sub- 
merged in the molten metal the top cap was closed 
and then bolted tightly to the vessel. Fig. 7 shows a 
schematic diagram of the test assembly. To monitor 
the temperature, a thermocouple was inserted into a 
predrilled hole on the top cap. The heater was then 
placed around the assembled system with a special 
noncombustible board placed on top to prevent heat 
convection and thus uniform heating of the test 
assembly. 

The heat was supplied in three stages. Starting at 
room temperature, the heat was ramped up to 50°C 
and held at that temperature for 10 min. Then the 
temperature was ramped up to 75°C and held there 
for an additional 10 min. The final stage involved 
ramping the temperature up to a target of 96°C for a 
period of 15 min and holding it at that temperature 
until the heat was no longer needed. The ceramic 
heater was placed around the vessel to liquefy the 
Wood's metal inside and to maintain a constant 
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Fig. 7. Schematic diagram of test assembly in the case of compression tests. 
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temperature throughout the experiment. This temper- 
ature was, in turn, monitored by a thermocouple that 
was attached to the side of the top cap. 

With the internal temperature thus established and 
maintained at 96°C, vacuum was applied to the 
vessel and kept constant for at least 30 min. The 
vacuum removed any air that had become trapped in 
the concrete cylinder when it was assembled inside 
the vessel. An axial stress of up to 90% of the 
ultimate strength was applied to the concrete cylin- 
der, at which point the vacuum was removed. Fi- 
nally, in order to saturate the induced microcracks 
with the molten metal, nitrogen pressure was applied 
to the top of the vessel. It was controlled by a 
high-pressure regulator on a bottle of nitrogen. A 
nitrogen pressure of 10.3 MPa was applied to the 
molten metal as the pore pressure, which was kept 
constant throughout the tests and which did not alter 
the effective stresses on the concrete cylinder. With a 
surface tension of 400 m N / m ,  the alloy could pene- 
trate into flat cracks with apertures as fine as 0.08 
/ x m .  

Throughout the period of loading and unloading, 
the axial load and axial displacement were recorded 
on a data acquisition system and monitored on an 
X-Y  plotter. The axial stress of interest was kept 
constant for 2 h to allow the liquid metal to penetrate 
into pores and fractures. Afterwards, fans were used 
to cool the vessel down to room temperature and to 
expedite solidification. Approximately 3 h elapsed 
between the time pore pressure was applied and the 
period during which the metal was allowed to solid- 
ify. 

After each experiment, the concrete cylinder was 
sectioned along its long axis, using oil to cool the 
cutting saw. An axial slab, approximately 5 mm 
thick, was sliced parallel to the direction of the load. 
Four specimens were extracted from the axial slab. 
The next step was to polish the specimens for the 
SEM study. The concrete specimens extracted from 
the axial and lateral slabs were 25 mm square and 
had an approximate thickness of 5 mm. First, one 
side of each specimen was polished with 120#, 
220#, 320#, and 600# silicon carbide using a rotat- 
ing grinder and mounting it against a 25.4 mm 
diameter glass plate with epoxy. In order to make 
both sides of the specimen parallel to each other, the 
samples were cut 2-3  mm thick by using a diamond 

slicing wheel with a nonaqueous lubricant (pro- 
pylene glycol coolant). The specimens were then 
lapped with a wheel grinder and polished with 600# 
silicon carbide. Further polishing was performed with 
100, 50, and 10 /zm aluminum powder on a glass 
plate. The final stage involved was treating speci- 

1 mens with 5, 3, and Z /zm diamond paste using a 
special polishing equipment. After each stage of 
polishing, the specimens were immersed in acetone 
and placed in an ultrasonic machine in order to 
remove the residual silica film on their surfaces, thus 
preparing them for the next stage of polishing. 

4.2. SEM image analysis and crack identification 

After all the specimens were thus prepared, and 
prior to observation by SEM, they were gold coated. 
The single most important reason for coating or 
increasing the bulk conductivity is to increase the 
electrical conductivity of the sample. Materials of 
high resistivity, such as concrete, charge rapidly 
under the incident beam and might develop a poten- 
tial sufficient to cause a dielectric breakdown in 
regions of the specimen. This could lead to varia- 
tions in the surface potentials, giving rise to the 
complex and dynamic image artifacts commonly re- 
ferred to as 'charging'. A suitable conducting path 
may be established with a thin coating layer of gold 
which eliminates the problems associated with charg- 
ing. Once the gold coat is in place, the specimen is 
then ready to be put into the scanning electron 
microscope (SEM). 

After the concrete samples were prepared for 
scanning electron microscope studies, images were 
extracted from each sample. A total of four samples 
taken from the center and edge of the concrete 
cylinders in axial direction were studied. They were 
examined using a JEOL JSM-35CF scanning elec- 
tron microscopy (SEM) with backscattered electrons 
(BSE) in conjunction with a KONTRON SEM-IPS 
image analyzer. For further details on the SEM 
technique, refer to Scrivener and Nemati (1996). The 
images were acquired by the image analyzer at mag- 
nifications of X 100, x 1000, X 10000, X20000, 
and X30000. The images were digitized into an 
array of 512 X 512 pixels with 255 gray levels. SEM 
produces a multiphase image from each observation. 
In order to recognize and isolate Wood's metal, 
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Fig. 8. SEM image of a crack network (a), histogram of grey levels (b), thresholded Wood's metal (c), and scrapping the pores (d). 
Application of the box-counting method to the thinned crack network (e, f). 
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which is the representative of pores and fractures in 
concrete, the image analyzer can make a histogram 
for all of the different phases in the image based on 
their gray levels, with zero representing the darkest 
phase and 255 representing the brightest phase (Fig. 
8a). From this histogram, and by means of the trial 
and error method, two threshold levels can be estab- 
lished to encompa~,;s the brightest phase in the image, 
namely Wood's metal. The threshold for Wood's 
metal identification was set between 170 and 255 
(Fig. 8b). The next step is to eliminate objects from 
the background that do not fall between these thresh- 
old levels, i.e., cementitious phases and aggregates. 
Once the above task is accomplished, what is left in 
the image is the crack network and pores shown by 
Wood's metal (Fig. 8c). 

At this point the aim is to eliminate objects on the 
basis of their area in pixel units. The lower and 
upper limits of the objects to be eliminated has to be 
established to include small pores, small non-con- 
tinUous cracks, etc. (Fig. 8d). This procedure is 
called 'scrapping'. The next step is to transform this 
image into a skeletonized binary image by means of 
a binary thinning process. For every thinning step, 
pixels that are not relevant to the connectivity of an 
object are remow~d from the object margins, i.e., 
converted into bmzkground pixels. The connectivity 
of objects is thus maintained. This process can be 
continued until all objects are reduced to a width of 
one pixel that approximates the skeletons. The binary 
image in Fig. 8e represents the compressive stress- 
induced crack network in concrete as they exist 
under applied loads. Fig. 8e is the final binary image 
used for fractal measurements. 

4.3. Determination of  the fractal dimension of  the 
crack networks 

The application of the box-counting method to 
compression-generated damage patterns is different 
from that on the tensile fracture profiles. Because the 
crack advancement direction is highly inclined and 
curved, the orthotropy directions continuously 
change. Moreover, the high resolution of the SEM 
introduces a finer cut-off in the scaling behavior 
(about two orders of magnitude finer than in the case 
of the tensile profiles). Thus, SEM allows for the 
detection of crack: branching and secondary cracks, 

whereas the post-mortem digitization of the tensile 
fracture surfaces yields a series of fracture profiles 
which can be interpreted as one-variable function 
graphs. In the case of compression crack networks 
like those in Fig. 8, it seems more convenient to use 
isotropic square coverings, because damage at that 
scale is self-similar rather than self-affine. 

Comparison between tensile fracture profiles and 
compressive patterns has to be made with care. Since 
the local mechanism of failure is Mode I cracking, 
the same as in tension (Nemat-Nasser and Hori, 
1993), the local dimension of a single propagating 
crack should follow the same multifractal trend of 
tensile cracks. That is, a Brownian process should be 
reached in the limit of the microscales. Indeed, it is 
not straightforward to measure the local fractal di- 
mension of a single crack on the thinned images. 
Instead, very interesting results come from the fractal 
analysis of the global damage patterns inside the 
specimen, which are directly related to the total 
dissipated energy W F. The fractal dimension of the 
crack networks obtained thresholding the Wood's 
metal from the surrounding bulk can be called the 
damage or network dimension A d (Fig. 8e and 8f). It 
must be clarified here that the damage dimension A d 
maintains a deeply different significance with respect 
to the local dimension A of a single crack. Whilst A 
refers only to the local process of propagation, which 
is fractal because represents the optimal sequence of 
random micro-failures events, A d reflects the self- 
organization of damage in a wide zone of material. 
As a consequence, self-organized dissipation in- 
creases ductility and may even promote crack arrest. 
Thus, it can be considered as a synthetic and quanti- 
tative measure of the complexity associated to the 
scale-invariant patterns of micro-fracture. A similar 
fractal description has been implemented for mod- 
elling the microcracks network induced in the prox- 
imity of the crack tip by tensile-splitting forces on 
notched concrete specimen (Vervuurt et al., 1995). 
The remarkable similarity of the damage patterns in 
these two cases confirms the relevance of local 
tensile ruptures under compressive loads. 

An opposite trend with respect to the tensile 
fracture profiles is obtained when looking at the 
compressive damage patterns with increasing SEM 
resolution (Fig. 9). Chaotic self-similar patterns, re- 
sembling 2D diffusion fronts in porous media, are 



106 A. Carpinteri et al. / Mechanics o f  Materials 26 (1997) 93-108 

revealed in the low-resolution images (0.304 
pixels//xm 2, which is comparable to the laser reso- 
lution). High values of the damage dimension are 
measured at this scale (Fig. 9a, d), ranging from 1.65 
to 1.79. A plane-filling network would possess frac- 
tal dimension A d equal to 2.0, as in the case of the 
Peano curve (Fig. 2b). Extrapolating to 3D domains, 
this would yield a space-filling domain of microc- 
racks, thereby implying a purely volumetric energy 
dissipation which is the hypothesis of the theory of 
Plasticity. 

As the resolution increases by one order of magni- 
tude (3.04 pixels//xm2), the fractal dimension de- 
creases, dropping to values ranging between 1.20 
and 1.55. This is due to the transition from a fully 
developed web of microcracks in the matrix to the 
local properties of isolated microcracks (Fig. 9b, e). 
Nevertheless, damage patterns maintain self-similar 
character in a wide range of the scaling regime. At 
very high resolutions (30.4 pixels//zm z) the width 
of the cracks is very large and the subsequent 
image-processing may lead to anomalous thinned 
crack patterns (Fig. 9c, f). Also, very low fractal 
dimensions are provided. It was thus decided to skip 
the highest-resolution images from the fractal analy- 
sis. 

If the complex character of the energy dissipation 
taking place at the crack boundaries is investigated, 
the local fractal dimension of the crack lips has to be 
measured (as in the case of tensile profiles), instead 
of the damage dimension A d of the entire 2D net- 

/ 

work. For this purpose, a different technique proved 
to be more effective in the binary thinning of the 
thresholded images (Vervuurt et al., 1995). Instead 
of averaging white pixels (corresponding to the 
Wood's metal) through the width (skeletonizing pro- 
cess, Fig. 10b), binary thinning can be performed by 
isolating the boundaries of the cracks (Fig. 10c). The 
box-counting analysis on the crack lips reveals self- 
affine scaling at the local level, and yields values of 
the fractal dimension very close to those of the 
tensile fracture profiles. 

5. Conclusions: Consequences of fractality 

The experimental determination of the fractal 
properties of any real set has to tackle with the 
inherent discreteness of the digitized data. Care must 
be taken when evaluating the results, especially if 
multifractal domains are considered. Any data acqui- 
sition technique provides an extrinsic characteristic 
size which is superposed to the intrinsic length of the 
domain. Thus, a lower cut-off in the scaling regime 
has to be clearly defined. The representative range of 
fractality has to be individuated for any material. 

The invasive fractal character of the fracture pat- 
terns in concrete has been fully confirmed by the 
experimental investigations. Thereby, fracture energy 
is dissipated inside complex fractal spaces and should 
be considered intermediate between surface energy 
(LEFM) and volumetric energy (theory of Plasticity, 
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Fig. 10. Binary thinning of a thresholded image (a): averaging (b) through the width (skeletonizing), and outlining the boundaries of the 
cracks (c). 
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Damage mechanics). Stress-induced cracking pos- 
sesses self-similar scaling properties when the global 
damage network is considered. This represents a 
piece of evidence of the multiscale self-organization 
of energy dissipatitzn in the bulk of heterogeneous 
materials. When the lips of a single propagating 
crack are considered, both in tension and compres- 
sion, self-affine scaling comes into play, leading to 
multifractal behavior. In this case, Brownian disorder 
(characterized by a + 1 /2  dimensional increment) 
represents the theoretical limit for microscopic com- 
plexity. In any case, further investigation is required 
to confirm this assertion. 

From a fracture mechanics point of view, fractal- 
ity permits to explain the stable crack growth occur- 
ring in the first stages of crack propagation. This 
behavior is physically related to the smoothing of the 
stress-singularity at the crack tip (Carpinteri and 
Chiaia, 1995b). The invasive fractality provides an 
attenuation of the fracture localization, involving an 
attenuation of the stress singularity and, macroscopi- 
cally, a more ductile behavior of disordered materi- 
als. By extending the well-known Griffith criterion 
for brittle fracture to the case of fractal cracks, 
Carpinteri and Chiaia (1995b) obtained a new tough- 
ness parameter, namely the fractal stress intensity 
factor, which presents the following anomalous 
physical dimensions: 

[KI* l = [F][L] -(:'+a~')/2. (2) 

Generalizing Irwin's solution, the following near-tip 
elastic stress field can be obtained, where dv is the 
fractional dimensional increment of the fracture do- 
main with respect 1:o the canonical surface dimen- 
sion: 

orij = gl* r -(' -d')/2.fij ( 0 ) .  (3) 

When d~ = 0 (A = 2) we have the classical relations 
of LEFM (stress singularity -- r-1/2). When d~ = 1, 
as a limit case, we find that the stress-singularity at 
the crack tip vanishes and no localization occurs, as 
if the energy were dissipated in the volume ( d  = 3). 

The above theory naturally yields R-curve behav- 
ior. While in the case of smooth cracks the crack-re- 
sistance is independent of crack length a, in the 
presence of fractal cracks it increases with a, follow- 
ing a power-law with exponent equal to the fractal 

l~~crack-resi'ta"Cea / multifracta| .... k-resistanc: a 

crack length crack length 
(a) (b) 

Fig. 11. Stable crack growth according to a monofractal (a) and to 
a multifractal (b) R-curve behavior. 

dimensional increment d~ (Fig. l la). Moreover, 
since the fractal increment d~ progressively tends to 
zero as the damage spreads (Fig. 5), a plateau in the 
crack-resistance curve is always detected (Fig. 11 b). 
The dimensional transition of the dynamical stress- 
intensity factor is also responsible for the slower 
speed of crack propagation with respect to the theo- 
retical Raleigh speed. 

From a structural point of view, the positive 
size-scale effect on the values of the nominal tough- 
ness (Kic or ~'F) of real structures can be ade- 
quately explained by the complexity of energy dissi- 
pation occurring, at the material level, in fractal 
spaces. Carpinteri (1994) demonstrated that, if b is a 
reference size of the structure, the nominal fracture 
energy ~'~ ([F][L] -1 ) increases with size by follow- 
ing a slope equal to d~v in the bilogarithmic diagram 
log ~'F vs. log b (Fig. 12a). By considering a 
monofractal domain (d~ = constant), an infinite 
value of fracture energy would be provided for the 
larger sizes, which is not corresponding to reality. 
Therefore, taking into account the multifractality of 
the fracture domains, a multifractal scaling law 
(MFSL) for the nominal fracture energy ~'F has been 
proposed by Carpinteri and Chiaia (1996). The ana- 
lytical expression for the multifractal scaling law, 
represented in Fig. 12b, is the following: 

~ ]  - 1 / 2  

~'F(b) = ~'F 1 + , (4) 

where ff~ is the nominal asymptotic fracture energy, 
valid in the limit of infinite structural size (b --* oo), 
and lch is the value of a characteristic internal length, 
which controls the transition from the fractal regime 
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Fig. 12. Size effects on concrete fracture energy. Monofractal (a) 
and multifractal (b) scaling laws. 

to the euc l i dean  one.  On  the bas is  o f  the M F S L ,  the  

n o m i n a l  f rac ture  ene rgy  appears  to be a phys i ca l ly  

m e a n i n g f u l  p a r a m e t e r  on ly  in the h o m o g e n e o u s  

reg ime ,  tha t  is, for  large spec imens .  F r o m  an engi -  

nee r ing  po in t  of  v iew,  the  M F S L  a l lows  for  the 

ex t rapo la t ion  f r o m  labora to ry - s i zed  spec imens  to a 

re l iab le  va lue  o f  the  f rac ture  ene rgy  va l id  for  real-  

s ized concre te  s t ructures .  T he  M F S L  was  thus  suc- 

cessfu l ly  app l ied  to var ious  expe r i m en t a l  da ta  

(Carp in te r i  and  Chia ia ,  1996).  
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